Solve for L
L=\frac{ibc_{P}}{f}+P_{50}-\frac{im}{100f}
f\neq 0
Solve for P_50
P_{50}=-\frac{ibc_{P}}{f}+L+\frac{im}{100f}
f\neq 0
Share
Copied to clipboard
P_{50}f=fL+\left(\frac{m}{100}-c_{P}b\right)i
Multiply both sides of the equation by f.
P_{50}f=fL+i\times \frac{m}{100}-ic_{P}b
Use the distributive property to multiply \frac{m}{100}-c_{P}b by i.
fL+i\times \frac{m}{100}-ic_{P}b=P_{50}f
Swap sides so that all variable terms are on the left hand side.
fL-ic_{P}b=P_{50}f-i\times \frac{m}{100}
Subtract i\times \frac{m}{100} from both sides.
fL=P_{50}f-i\times \frac{m}{100}-\left(-ic_{P}b\right)
Subtract -ic_{P}b from both sides.
100fL=100\left(P_{50}f-i\times \frac{m}{100}\right)-\left(-100ic_{P}b\right)
Multiply both sides of the equation by 100.
10000fL=10000\left(P_{50}f-i\times \frac{m}{100}\right)-100\times \left(-100i\right)c_{P}b
Multiply both sides of the equation by 100.
10000fL=10000P_{50}f-10000i\times \frac{m}{100}-100\times \left(-100i\right)c_{P}b
Use the distributive property to multiply 10000 by P_{50}f-i\times \frac{m}{100}.
10000fL=10000P_{50}f-10000i\times \frac{m}{100}+10000ic_{P}b
Multiply -100 and -100i to get 10000i.
1000000fL=1000000P_{50}f-10000im+1000000ic_{P}b
Multiply both sides of the equation by 100.
1000000fL=1000000P_{50}f+1000000ibc_{P}-10000im
The equation is in standard form.
\frac{1000000fL}{1000000f}=\frac{1000000P_{50}f+1000000ibc_{P}-10000im}{1000000f}
Divide both sides by 1000000f.
L=\frac{1000000P_{50}f+1000000ibc_{P}-10000im}{1000000f}
Dividing by 1000000f undoes the multiplication by 1000000f.
L=\frac{ibc_{P}-\frac{im}{100}}{f}+P_{50}
Divide 1000000P_{50}f-10000im+1000000ic_{P}b by 1000000f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}