Solve for F_1
F_{1}=-\frac{-a^{2}+2a-2}{P|a|}
P\neq 0\text{ and }a\neq 0
Solve for P
P=-\frac{-a^{2}+2a-2}{F_{1}|a|}
F_{1}\neq 0\text{ and }a\neq 0
Share
Copied to clipboard
PF_{1}=\sqrt{a^{2}-4a+4+\left(\frac{2}{a}-2\right)^{2}}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
PF_{1}=\sqrt{a^{2}-4a+4+\left(\frac{2}{a}-\frac{2a}{a}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a}{a}.
PF_{1}=\sqrt{a^{2}-4a+4+\left(\frac{2-2a}{a}\right)^{2}}
Since \frac{2}{a} and \frac{2a}{a} have the same denominator, subtract them by subtracting their numerators.
PF_{1}=\sqrt{a^{2}-4a+4+\frac{\left(2-2a\right)^{2}}{a^{2}}}
To raise \frac{2-2a}{a} to a power, raise both numerator and denominator to the power and then divide.
PF_{1}=\sqrt{\frac{\left(a^{2}-4a+4\right)a^{2}}{a^{2}}+\frac{\left(2-2a\right)^{2}}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}-4a+4 times \frac{a^{2}}{a^{2}}.
PF_{1}=\sqrt{\frac{\left(a^{2}-4a+4\right)a^{2}+\left(2-2a\right)^{2}}{a^{2}}}
Since \frac{\left(a^{2}-4a+4\right)a^{2}}{a^{2}} and \frac{\left(2-2a\right)^{2}}{a^{2}} have the same denominator, add them by adding their numerators.
PF_{1}=\sqrt{\frac{a^{4}-4a^{3}+4a^{2}+4-8a+4a^{2}}{a^{2}}}
Do the multiplications in \left(a^{2}-4a+4\right)a^{2}+\left(2-2a\right)^{2}.
PF_{1}=\sqrt{\frac{a^{4}-4a^{3}+4+8a^{2}-8a}{a^{2}}}
Combine like terms in a^{4}-4a^{3}+4a^{2}+4-8a+4a^{2}.
PF_{1}=\sqrt{\frac{a^{4}-4a^{3}+8a^{2}-8a+4}{a^{2}}}
The equation is in standard form.
\frac{PF_{1}}{P}=\frac{a^{2}-2a+2}{|a|P}
Divide both sides by P.
F_{1}=\frac{a^{2}-2a+2}{|a|P}
Dividing by P undoes the multiplication by P.
F_{1}=\frac{a^{2}-2a+2}{P|a|}
Divide \frac{2-2a+a^{2}}{|a|} by P.
PF_{1}=\sqrt{a^{2}-4a+4+\left(\frac{2}{a}-2\right)^{2}}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(a-2\right)^{2}.
PF_{1}=\sqrt{a^{2}-4a+4+\left(\frac{2}{a}-\frac{2a}{a}\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{a}{a}.
PF_{1}=\sqrt{a^{2}-4a+4+\left(\frac{2-2a}{a}\right)^{2}}
Since \frac{2}{a} and \frac{2a}{a} have the same denominator, subtract them by subtracting their numerators.
PF_{1}=\sqrt{a^{2}-4a+4+\frac{\left(2-2a\right)^{2}}{a^{2}}}
To raise \frac{2-2a}{a} to a power, raise both numerator and denominator to the power and then divide.
PF_{1}=\sqrt{\frac{\left(a^{2}-4a+4\right)a^{2}}{a^{2}}+\frac{\left(2-2a\right)^{2}}{a^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply a^{2}-4a+4 times \frac{a^{2}}{a^{2}}.
PF_{1}=\sqrt{\frac{\left(a^{2}-4a+4\right)a^{2}+\left(2-2a\right)^{2}}{a^{2}}}
Since \frac{\left(a^{2}-4a+4\right)a^{2}}{a^{2}} and \frac{\left(2-2a\right)^{2}}{a^{2}} have the same denominator, add them by adding their numerators.
PF_{1}=\sqrt{\frac{a^{4}-4a^{3}+4a^{2}+4-8a+4a^{2}}{a^{2}}}
Do the multiplications in \left(a^{2}-4a+4\right)a^{2}+\left(2-2a\right)^{2}.
PF_{1}=\sqrt{\frac{a^{4}-4a^{3}+4+8a^{2}-8a}{a^{2}}}
Combine like terms in a^{4}-4a^{3}+4a^{2}+4-8a+4a^{2}.
F_{1}P=\sqrt{\frac{a^{4}-4a^{3}+8a^{2}-8a+4}{a^{2}}}
The equation is in standard form.
\frac{F_{1}P}{F_{1}}=\frac{a^{2}-2a+2}{|a|F_{1}}
Divide both sides by F_{1}.
P=\frac{a^{2}-2a+2}{|a|F_{1}}
Dividing by F_{1} undoes the multiplication by F_{1}.
P=\frac{a^{2}-2a+2}{F_{1}|a|}
Divide \frac{2-2a+a^{2}}{|a|} by F_{1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}