Solve for a
a=\frac{-3x^{3}+2x+P-15}{x^{2}+1}
Solve for P
P=3x^{3}+ax^{2}-2x+a+15
Share
Copied to clipboard
3x^{3}+ax^{2}-2x+a+15=P\frac{\mathrm{d}}{\mathrm{d}x}(x)
Swap sides so that all variable terms are on the left hand side.
ax^{2}-2x+a+15=P\frac{\mathrm{d}}{\mathrm{d}x}(x)-3x^{3}
Subtract 3x^{3} from both sides.
ax^{2}+a+15=P\frac{\mathrm{d}}{\mathrm{d}x}(x)-3x^{3}+2x
Add 2x to both sides.
ax^{2}+a=P\frac{\mathrm{d}}{\mathrm{d}x}(x)-3x^{3}+2x-15
Subtract 15 from both sides.
\left(x^{2}+1\right)a=P\frac{\mathrm{d}}{\mathrm{d}x}(x)-3x^{3}+2x-15
Combine all terms containing a.
\left(x^{2}+1\right)a=-3x^{3}+2x+P-15
The equation is in standard form.
\frac{\left(x^{2}+1\right)a}{x^{2}+1}=\frac{-3x^{3}+2x+P-15}{x^{2}+1}
Divide both sides by x^{2}+1.
a=\frac{-3x^{3}+2x+P-15}{x^{2}+1}
Dividing by x^{2}+1 undoes the multiplication by x^{2}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}