Solve for P, x
x=5
P = \frac{619}{30} = 20\frac{19}{30} \approx 20.633333333
Graph
Share
Copied to clipboard
P\times 5=5^{3}-\frac{4}{3}\times 5^{2}+\frac{5}{2}\times 5-1
Consider the first equation. Insert the known values of variables into the equation.
P\times 5=125-\frac{4}{3}\times 5^{2}+\frac{5}{2}\times 5-1
Calculate 5 to the power of 3 and get 125.
P\times 5=125-\frac{4}{3}\times 25+\frac{5}{2}\times 5-1
Calculate 5 to the power of 2 and get 25.
P\times 5=125-\frac{100}{3}+\frac{5}{2}\times 5-1
Multiply -\frac{4}{3} and 25 to get -\frac{100}{3}.
P\times 5=\frac{275}{3}+\frac{5}{2}\times 5-1
Subtract \frac{100}{3} from 125 to get \frac{275}{3}.
P\times 5=\frac{275}{3}+\frac{25}{2}-1
Multiply \frac{5}{2} and 5 to get \frac{25}{2}.
P\times 5=\frac{625}{6}-1
Add \frac{275}{3} and \frac{25}{2} to get \frac{625}{6}.
P\times 5=\frac{619}{6}
Subtract 1 from \frac{625}{6} to get \frac{619}{6}.
P=\frac{\frac{619}{6}}{5}
Divide both sides by 5.
P=\frac{619}{6\times 5}
Express \frac{\frac{619}{6}}{5} as a single fraction.
P=\frac{619}{30}
Multiply 6 and 5 to get 30.
P=\frac{619}{30} x=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}