Solve for Q
Q=-\frac{x^{3}}{3}+\frac{1}{2}-\frac{1}{3x}
x\neq 0
Graph
Share
Copied to clipboard
-3x+2x^{4}+6Qx=x^{2}-2-x^{2}
Subtract x^{2} from both sides.
-3x+2x^{4}+6Qx=-2
Combine x^{2} and -x^{2} to get 0.
2x^{4}+6Qx=-2+3x
Add 3x to both sides.
6Qx=-2+3x-2x^{4}
Subtract 2x^{4} from both sides.
6xQ=-2x^{4}+3x-2
The equation is in standard form.
\frac{6xQ}{6x}=\frac{-2x^{4}+3x-2}{6x}
Divide both sides by 6x.
Q=\frac{-2x^{4}+3x-2}{6x}
Dividing by 6x undoes the multiplication by 6x.
Q=-\frac{x^{3}}{3}+\frac{1}{2}-\frac{1}{3x}
Divide -2+3x-2x^{4} by 6x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}