Solve for x (complex solution)
x=-45+15\sqrt{19951}i\approx -45+2118.720132533i
x=-15\sqrt{19951}i-45\approx -45-2118.720132533i
Graph
Share
Copied to clipboard
9000-xx=4500000+90x
Multiply both sides of the equation by 30.
9000-x^{2}=4500000+90x
Multiply x and x to get x^{2}.
9000-x^{2}-4500000=90x
Subtract 4500000 from both sides.
-4491000-x^{2}=90x
Subtract 4500000 from 9000 to get -4491000.
-4491000-x^{2}-90x=0
Subtract 90x from both sides.
-x^{2}-90x-4491000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\left(-1\right)\left(-4491000\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -90 for b, and -4491000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\left(-1\right)\left(-4491000\right)}}{2\left(-1\right)}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100+4\left(-4491000\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-90\right)±\sqrt{8100-17964000}}{2\left(-1\right)}
Multiply 4 times -4491000.
x=\frac{-\left(-90\right)±\sqrt{-17955900}}{2\left(-1\right)}
Add 8100 to -17964000.
x=\frac{-\left(-90\right)±30\sqrt{19951}i}{2\left(-1\right)}
Take the square root of -17955900.
x=\frac{90±30\sqrt{19951}i}{2\left(-1\right)}
The opposite of -90 is 90.
x=\frac{90±30\sqrt{19951}i}{-2}
Multiply 2 times -1.
x=\frac{90+30\sqrt{19951}i}{-2}
Now solve the equation x=\frac{90±30\sqrt{19951}i}{-2} when ± is plus. Add 90 to 30i\sqrt{19951}.
x=-15\sqrt{19951}i-45
Divide 90+30i\sqrt{19951} by -2.
x=\frac{-30\sqrt{19951}i+90}{-2}
Now solve the equation x=\frac{90±30\sqrt{19951}i}{-2} when ± is minus. Subtract 30i\sqrt{19951} from 90.
x=-45+15\sqrt{19951}i
Divide 90-30i\sqrt{19951} by -2.
x=-15\sqrt{19951}i-45 x=-45+15\sqrt{19951}i
The equation is now solved.
9000-xx=4500000+90x
Multiply both sides of the equation by 30.
9000-x^{2}=4500000+90x
Multiply x and x to get x^{2}.
9000-x^{2}-90x=4500000
Subtract 90x from both sides.
-x^{2}-90x=4500000-9000
Subtract 9000 from both sides.
-x^{2}-90x=4491000
Subtract 9000 from 4500000 to get 4491000.
\frac{-x^{2}-90x}{-1}=\frac{4491000}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{90}{-1}\right)x=\frac{4491000}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+90x=\frac{4491000}{-1}
Divide -90 by -1.
x^{2}+90x=-4491000
Divide 4491000 by -1.
x^{2}+90x+45^{2}=-4491000+45^{2}
Divide 90, the coefficient of the x term, by 2 to get 45. Then add the square of 45 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+90x+2025=-4491000+2025
Square 45.
x^{2}+90x+2025=-4488975
Add -4491000 to 2025.
\left(x+45\right)^{2}=-4488975
Factor x^{2}+90x+2025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+45\right)^{2}}=\sqrt{-4488975}
Take the square root of both sides of the equation.
x+45=15\sqrt{19951}i x+45=-15\sqrt{19951}i
Simplify.
x=-45+15\sqrt{19951}i x=-15\sqrt{19951}i-45
Subtract 45 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}