Evaluate
\frac{5}{8}=0.625
Factor
\frac{5}{2 ^ {3}} = 0.625
Share
Copied to clipboard
\frac{1}{4}\times \frac{1}{2}+\frac{2}{8}\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1\times 1}{4\times 2}+\frac{2}{8}\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Multiply \frac{1}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}+\frac{2}{8}\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{1\times 1}{4\times 2}.
\frac{1}{8}+\frac{1}{4}\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{8}+\frac{1}{4}\left(\frac{2}{2}-\frac{1}{2}\right)+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Convert 1 to fraction \frac{2}{2}.
\frac{1}{8}+\frac{1}{4}\times \frac{2-1}{2}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{8}+\frac{1}{4}\times \frac{1}{2}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Subtract 1 from 2 to get 1.
\frac{1}{8}+\frac{1\times 1}{4\times 2}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Multiply \frac{1}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}+\frac{1}{8}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Do the multiplications in the fraction \frac{1\times 1}{4\times 2}.
\frac{1+1}{8}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Since \frac{1}{8} and \frac{1}{8} have the same denominator, add them by adding their numerators.
\frac{2}{8}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Add 1 and 1 to get 2.
\frac{1}{4}+\left(1-\frac{2}{8}\right)\times \frac{1}{2}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{4}+\left(1-\frac{1}{4}\right)\times \frac{1}{2}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{4}+\left(\frac{4}{4}-\frac{1}{4}\right)\times \frac{1}{2}
Convert 1 to fraction \frac{4}{4}.
\frac{1}{4}+\frac{4-1}{4}\times \frac{1}{2}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{3}{4}\times \frac{1}{2}
Subtract 1 from 4 to get 3.
\frac{1}{4}+\frac{3\times 1}{4\times 2}
Multiply \frac{3}{4} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}+\frac{3}{8}
Do the multiplications in the fraction \frac{3\times 1}{4\times 2}.
\frac{2}{8}+\frac{3}{8}
Least common multiple of 4 and 8 is 8. Convert \frac{1}{4} and \frac{3}{8} to fractions with denominator 8.
\frac{2+3}{8}
Since \frac{2}{8} and \frac{3}{8} have the same denominator, add them by adding their numerators.
\frac{5}{8}
Add 2 and 3 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}