Solve for B_M
B_{M}=\frac{1}{13PP_{B}A^{2}}
A\neq 0\text{ and }P_{B}\neq 0\text{ and }P\neq 0
Solve for A (complex solution)
A=-\frac{\sqrt{13}B_{M}^{-\frac{1}{2}}P^{-\frac{1}{2}}P_{B}^{-\frac{1}{2}}}{13}
A=\frac{\sqrt{13}B_{M}^{-\frac{1}{2}}P^{-\frac{1}{2}}P_{B}^{-\frac{1}{2}}}{13}\text{, }B_{M}\neq 0\text{ and }P_{B}\neq 0\text{ and }P\neq 0
Solve for A
A=\frac{\sqrt{\frac{13}{B_{M}PP_{B}}}}{13}
A=-\frac{\sqrt{\frac{13}{B_{M}PP_{B}}}}{13}\text{, }\left(B_{M}<0\text{ and }P_{B}<0\text{ and }P>0\right)\text{ or }\left(B_{M}<0\text{ and }P<0\text{ and }P_{B}>0\right)\text{ or }\left(P>0\text{ and }P_{B}>0\text{ and }B_{M}>0\right)\text{ or }\left(P_{B}<0\text{ and }P<0\text{ and }B_{M}>0\right)
Share
Copied to clipboard
P\times 13P_{B}AAB_{M}=1
Variable B_{M} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by AB_{M}.
P\times 13P_{B}A^{2}B_{M}=1
Multiply A and A to get A^{2}.
13PP_{B}A^{2}B_{M}=1
The equation is in standard form.
\frac{13PP_{B}A^{2}B_{M}}{13PP_{B}A^{2}}=\frac{1}{13PP_{B}A^{2}}
Divide both sides by 13PP_{B}A^{2}.
B_{M}=\frac{1}{13PP_{B}A^{2}}
Dividing by 13PP_{B}A^{2} undoes the multiplication by 13PP_{B}A^{2}.
B_{M}=\frac{1}{13PP_{B}A^{2}}\text{, }B_{M}\neq 0
Variable B_{M} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}