Solve for P
P=\frac{40\left(p+300\right)}{441}
Solve for p
p=\frac{441P}{40}-300
Quiz
Linear Equation
5 problems similar to:
P ( \frac { 21 } { 20 } ) ^ { 2 } - \frac { p } { 10 } = 30
Share
Copied to clipboard
10P\times \left(\frac{21}{20}\right)^{2}-p=300
Multiply both sides of the equation by 10.
10P\times \frac{441}{400}-p=300
Calculate \frac{21}{20} to the power of 2 and get \frac{441}{400}.
\frac{441}{40}P-p=300
Multiply 10 and \frac{441}{400} to get \frac{441}{40}.
\frac{441}{40}P=300+p
Add p to both sides.
\frac{441}{40}P=p+300
The equation is in standard form.
\frac{\frac{441}{40}P}{\frac{441}{40}}=\frac{p+300}{\frac{441}{40}}
Divide both sides of the equation by \frac{441}{40}, which is the same as multiplying both sides by the reciprocal of the fraction.
P=\frac{p+300}{\frac{441}{40}}
Dividing by \frac{441}{40} undoes the multiplication by \frac{441}{40}.
P=\frac{40p}{441}+\frac{4000}{147}
Divide 300+p by \frac{441}{40} by multiplying 300+p by the reciprocal of \frac{441}{40}.
10P\times \left(\frac{21}{20}\right)^{2}-p=300
Multiply both sides of the equation by 10.
10P\times \frac{441}{400}-p=300
Calculate \frac{21}{20} to the power of 2 and get \frac{441}{400}.
\frac{441}{40}P-p=300
Multiply 10 and \frac{441}{400} to get \frac{441}{40}.
-p=300-\frac{441}{40}P
Subtract \frac{441}{40}P from both sides.
-p=-\frac{441P}{40}+300
The equation is in standard form.
\frac{-p}{-1}=\frac{-\frac{441P}{40}+300}{-1}
Divide both sides by -1.
p=\frac{-\frac{441P}{40}+300}{-1}
Dividing by -1 undoes the multiplication by -1.
p=\frac{441P}{40}-300
Divide -\frac{441P}{40}+300 by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}