Solve for G
\left\{\begin{matrix}G=\frac{4\times \left(\frac{\pi }{P}\right)^{2}a^{3}}{M}\text{, }&a\neq 0\text{ and }M\neq 0\text{ and }P\neq 0\\G\neq 0\text{, }&P=0\text{ and }a=0\text{ and }M\neq 0\end{matrix}\right.
Solve for M
\left\{\begin{matrix}M=\frac{4\times \left(\frac{\pi }{P}\right)^{2}a^{3}}{G}\text{, }&a\neq 0\text{ and }G\neq 0\text{ and }P\neq 0\\M\neq 0\text{, }&P=0\text{ and }a=0\text{ and }G\neq 0\end{matrix}\right.
Share
Copied to clipboard
GMP^{2}=4\pi ^{2}a^{3}
Variable G cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by GM.
MP^{2}G=4\pi ^{2}a^{3}
The equation is in standard form.
\frac{MP^{2}G}{MP^{2}}=\frac{4\pi ^{2}a^{3}}{MP^{2}}
Divide both sides by MP^{2}.
G=\frac{4\pi ^{2}a^{3}}{MP^{2}}
Dividing by MP^{2} undoes the multiplication by MP^{2}.
G=\frac{4\pi ^{2}a^{3}}{MP^{2}}\text{, }G\neq 0
Variable G cannot be equal to 0.
GMP^{2}=4\pi ^{2}a^{3}
Variable M cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by GM.
GP^{2}M=4\pi ^{2}a^{3}
The equation is in standard form.
\frac{GP^{2}M}{GP^{2}}=\frac{4\pi ^{2}a^{3}}{GP^{2}}
Divide both sides by GP^{2}.
M=\frac{4\pi ^{2}a^{3}}{GP^{2}}
Dividing by GP^{2} undoes the multiplication by GP^{2}.
M=\frac{4\pi ^{2}a^{3}}{GP^{2}}\text{, }M\neq 0
Variable M cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}