Solve for P
P=\frac{21n}{4}-15
Solve for n
n=\frac{4P}{21}+\frac{20}{7}
Share
Copied to clipboard
P=7.5n-2.25n-15
To find the opposite of 2.25n+15, find the opposite of each term.
P=5.25n-15
Combine 7.5n and -2.25n to get 5.25n.
P=7.5n-2.25n-15
To find the opposite of 2.25n+15, find the opposite of each term.
P=5.25n-15
Combine 7.5n and -2.25n to get 5.25n.
5.25n-15=P
Swap sides so that all variable terms are on the left hand side.
5.25n=P+15
Add 15 to both sides.
\frac{5.25n}{5.25}=\frac{P+15}{5.25}
Divide both sides of the equation by 5.25, which is the same as multiplying both sides by the reciprocal of the fraction.
n=\frac{P+15}{5.25}
Dividing by 5.25 undoes the multiplication by 5.25.
n=\frac{4P}{21}+\frac{20}{7}
Divide P+15 by 5.25 by multiplying P+15 by the reciprocal of 5.25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}