Solve for B
B=\frac{500}{P+100}
P\neq -100
Solve for P
P=-100+\frac{500}{B}
B\neq 0
Share
Copied to clipboard
PB=100\left(5-B\right)
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by B.
PB=500-100B
Use the distributive property to multiply 100 by 5-B.
PB+100B=500
Add 100B to both sides.
\left(P+100\right)B=500
Combine all terms containing B.
\frac{\left(P+100\right)B}{P+100}=\frac{500}{P+100}
Divide both sides by P+100.
B=\frac{500}{P+100}
Dividing by P+100 undoes the multiplication by P+100.
B=\frac{500}{P+100}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}