Solve for Q
Q=\frac{P+20}{10}
Solve for P
P=10\left(Q-2\right)
Share
Copied to clipboard
P=\frac{Q}{0.1}+\frac{-2}{0.1}
Divide each term of Q-2 by 0.1 to get \frac{Q}{0.1}+\frac{-2}{0.1}.
P=\frac{Q}{0.1}-20
Expand \frac{-2}{0.1} by multiplying both numerator and the denominator by 10. Anything divided by one gives itself.
\frac{Q}{0.1}-20=P
Swap sides so that all variable terms are on the left hand side.
\frac{Q}{0.1}=P+20
Add 20 to both sides.
10Q=P+20
The equation is in standard form.
\frac{10Q}{10}=\frac{P+20}{10}
Divide both sides by 10.
Q=\frac{P+20}{10}
Dividing by 10 undoes the multiplication by 10.
Q=\frac{P}{10}+2
Divide P+20 by 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}