Solve for P
P=\frac{Q_{5}+10}{75}
Solve for Q_5
Q_{5}=75P-10
Share
Copied to clipboard
P=\frac{1}{75}Q_{5}-\frac{4}{15}+0.4
Divide each term of Q_{5}-20 by 75 to get \frac{1}{75}Q_{5}-\frac{4}{15}.
P=\frac{1}{75}Q_{5}+\frac{2}{15}
Add -\frac{4}{15} and 0.4 to get \frac{2}{15}.
P=\frac{1}{75}Q_{5}-\frac{4}{15}+0.4
Divide each term of Q_{5}-20 by 75 to get \frac{1}{75}Q_{5}-\frac{4}{15}.
P=\frac{1}{75}Q_{5}+\frac{2}{15}
Add -\frac{4}{15} and 0.4 to get \frac{2}{15}.
\frac{1}{75}Q_{5}+\frac{2}{15}=P
Swap sides so that all variable terms are on the left hand side.
\frac{1}{75}Q_{5}=P-\frac{2}{15}
Subtract \frac{2}{15} from both sides.
\frac{\frac{1}{75}Q_{5}}{\frac{1}{75}}=\frac{P-\frac{2}{15}}{\frac{1}{75}}
Multiply both sides by 75.
Q_{5}=\frac{P-\frac{2}{15}}{\frac{1}{75}}
Dividing by \frac{1}{75} undoes the multiplication by \frac{1}{75}.
Q_{5}=75P-10
Divide P-\frac{2}{15} by \frac{1}{75} by multiplying P-\frac{2}{15} by the reciprocal of \frac{1}{75}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}