Solve for Q
\left\{\begin{matrix}Q=\frac{50P^{2}}{h}\text{, }&P\geq 0\text{ and }h\neq 0\\Q\in \mathrm{R}\text{, }&h=0\text{ and }P=0\end{matrix}\right.
Solve for P (complex solution)
P=\frac{\sqrt{2Qh}}{10}
Solve for Q (complex solution)
\left\{\begin{matrix}Q=\frac{50P^{2}}{h}\text{, }&h\neq 0\text{ and }\left(P=0\text{ or }arg(P)<\pi \right)\\Q\in \mathrm{C}\text{, }&P=0\text{ and }h=0\end{matrix}\right.
Solve for P
P=\frac{\sqrt{2Qh}}{10}
\left(h\geq 0\text{ and }Q\geq 0\right)\text{ or }\left(Q\leq 0\text{ and }h\leq 0\right)
Share
Copied to clipboard
P=\sqrt{\frac{1}{50}Qh}
Divide 2Qh by 100 to get \frac{1}{50}Qh.
\sqrt{\frac{1}{50}Qh}=P
Swap sides so that all variable terms are on the left hand side.
\frac{h}{50}Q=P^{2}
Square both sides of the equation.
\frac{50\times \frac{h}{50}Q}{h}=\frac{50P^{2}}{h}
Divide both sides by \frac{1}{50}h.
Q=\frac{50P^{2}}{h}
Dividing by \frac{1}{50}h undoes the multiplication by \frac{1}{50}h.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}