Solve for N
\left\{\begin{matrix}\\N\neq 0\text{, }&\text{unconditionally}\\N=\frac{3287f}{17681P}\text{, }&f\neq 0\text{ and }P\neq 0\end{matrix}\right.
Solve for P
P=\frac{3287f}{17681N}
N\neq 0
Share
Copied to clipboard
PN=f\times \frac{328.7}{1768.1}
Variable N cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by N.
PN=f\times \frac{3287}{17681}
Expand \frac{328.7}{1768.1} by multiplying both numerator and the denominator by 10.
PN=\frac{3287f}{17681}
The equation is in standard form.
\frac{PN}{P}=\frac{3287f}{17681P}
Divide both sides by P.
N=\frac{3287f}{17681P}
Dividing by P undoes the multiplication by P.
N=\frac{3287f}{17681P}\text{, }N\neq 0
Variable N cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}