Solve for P
\left\{\begin{matrix}P=0\text{, }&b\neq -2h\\P\in \mathrm{R}\text{, }&o=\frac{b+2h}{b}\text{ and }b\neq -2h\text{ and }b\neq 0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=\frac{2h}{o-1}\text{, }&o\neq 0\text{ and }h\neq 0\text{ and }o\neq 1\\b\neq 0\text{, }&h=0\text{ and }o=1\\b\neq -2h\text{, }&P=0\end{matrix}\right.
Share
Copied to clipboard
P=\frac{bP}{2h+b}o
Express \frac{b}{2h+b}P as a single fraction.
P=\frac{bPo}{2h+b}
Express \frac{bP}{2h+b}o as a single fraction.
P-\frac{bPo}{2h+b}=0
Subtract \frac{bPo}{2h+b} from both sides.
\frac{P\left(2h+b\right)}{2h+b}-\frac{bPo}{2h+b}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply P times \frac{2h+b}{2h+b}.
\frac{P\left(2h+b\right)-bPo}{2h+b}=0
Since \frac{P\left(2h+b\right)}{2h+b} and \frac{bPo}{2h+b} have the same denominator, subtract them by subtracting their numerators.
\frac{2Ph+Pb-bPo}{2h+b}=0
Do the multiplications in P\left(2h+b\right)-bPo.
2Ph+Pb-bPo=0
Multiply both sides of the equation by b+2h.
\left(2h+b-bo\right)P=0
Combine all terms containing P.
P=0
Divide 0 by 2h+b-bo.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}