Solve for L (complex solution)
\left\{\begin{matrix}L=\frac{AP}{R}\text{, }&R\neq 0\text{ and }A\neq 0\\L\in \mathrm{C}\text{, }&P=0\text{ and }R=0\text{ and }A\neq 0\end{matrix}\right.
Solve for A
\left\{\begin{matrix}A=\frac{LR}{P}\text{, }&L\neq 0\text{ and }R\neq 0\text{ and }P\neq 0\\A\neq 0\text{, }&\left(L=0\text{ or }R=0\right)\text{ and }P=0\end{matrix}\right.
Solve for L
\left\{\begin{matrix}L=\frac{AP}{R}\text{, }&R\neq 0\text{ and }A\neq 0\\L\in \mathrm{R}\text{, }&P=0\text{ and }R=0\text{ and }A\neq 0\end{matrix}\right.
Share
Copied to clipboard
PA=RL
Multiply both sides of the equation by A.
RL=PA
Swap sides so that all variable terms are on the left hand side.
RL=AP
The equation is in standard form.
\frac{RL}{R}=\frac{AP}{R}
Divide both sides by R.
L=\frac{AP}{R}
Dividing by R undoes the multiplication by R.
PA=RL
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by A.
PA=LR
The equation is in standard form.
\frac{PA}{P}=\frac{LR}{P}
Divide both sides by P.
A=\frac{LR}{P}
Dividing by P undoes the multiplication by P.
A=\frac{LR}{P}\text{, }A\neq 0
Variable A cannot be equal to 0.
PA=RL
Multiply both sides of the equation by A.
RL=PA
Swap sides so that all variable terms are on the left hand side.
RL=AP
The equation is in standard form.
\frac{RL}{R}=\frac{AP}{R}
Divide both sides by R.
L=\frac{AP}{R}
Dividing by R undoes the multiplication by R.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}