Solve for t
t=\frac{4\left(P-2\right)}{P+6}
P\neq -6
Solve for P
P=\frac{2\left(3t+4\right)}{4-t}
t\neq 4
Share
Copied to clipboard
P\left(-t+4\right)=6t+8
Variable t cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by -t+4.
-Pt+4P=6t+8
Use the distributive property to multiply P by -t+4.
-Pt+4P-6t=8
Subtract 6t from both sides.
-Pt-6t=8-4P
Subtract 4P from both sides.
\left(-P-6\right)t=8-4P
Combine all terms containing t.
\frac{\left(-P-6\right)t}{-P-6}=\frac{8-4P}{-P-6}
Divide both sides by -P-6.
t=\frac{8-4P}{-P-6}
Dividing by -P-6 undoes the multiplication by -P-6.
t=-\frac{4\left(2-P\right)}{P+6}
Divide 8-4P by -P-6.
t=-\frac{4\left(2-P\right)}{P+6}\text{, }t\neq 4
Variable t cannot be equal to 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}