Solve for P
P = \frac{130000000000000000000000000000000000}{27888053550934389677095526468343} = 4661\frac{1.3782399094813897 \times 10^{31}}{2.788805355093439 \times 10^{31}} \approx 4661.494204412
Assign P
P≔\frac{130000000000000000000000000000000000}{27888053550934389677095526468343}
Share
Copied to clipboard
P=\frac{130000\times 0.07}{\left(1+\frac{0.07}{1}\right)^{1\times 16}-1}
Anything divided by one gives itself.
P=\frac{9100}{\left(1+\frac{0.07}{1}\right)^{1\times 16}-1}
Multiply 130000 and 0.07 to get 9100.
P=\frac{9100}{\left(1+0.07\right)^{1\times 16}-1}
Anything divided by one gives itself.
P=\frac{9100}{1.07^{1\times 16}-1}
Add 1 and 0.07 to get 1.07.
P=\frac{9100}{1.07^{16}-1}
Multiply 1 and 16 to get 16.
P=\frac{9100}{2.95216374856540727739668685278401-1}
Calculate 1.07 to the power of 16 and get 2.95216374856540727739668685278401.
P=\frac{9100}{1.95216374856540727739668685278401}
Subtract 1 from 2.95216374856540727739668685278401 to get 1.95216374856540727739668685278401.
P=\frac{910000000000000000000000000000000000}{195216374856540727739668685278401}
Expand \frac{9100}{1.95216374856540727739668685278401} by multiplying both numerator and the denominator by 100000000000000000000000000000000.
P=\frac{130000000000000000000000000000000000}{27888053550934389677095526468343}
Reduce the fraction \frac{910000000000000000000000000000000000}{195216374856540727739668685278401} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}