Evaluate
17O+\frac{\sqrt{15}}{5}
Differentiate w.r.t. O
17
Share
Copied to clipboard
O\times 17+3\sqrt{\frac{1-0}{15}}
Multiply 0 and 17 to get 0.
O\times 17+3\sqrt{\frac{1}{15}}
Subtract 0 from 1 to get 1.
O\times 17+3\times \frac{\sqrt{1}}{\sqrt{15}}
Rewrite the square root of the division \sqrt{\frac{1}{15}} as the division of square roots \frac{\sqrt{1}}{\sqrt{15}}.
O\times 17+3\times \frac{1}{\sqrt{15}}
Calculate the square root of 1 and get 1.
O\times 17+3\times \frac{\sqrt{15}}{\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
O\times 17+3\times \frac{\sqrt{15}}{15}
The square of \sqrt{15} is 15.
O\times 17+\frac{\sqrt{15}}{5}
Cancel out 15, the greatest common factor in 3 and 15.
\frac{5O\times 17}{5}+\frac{\sqrt{15}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply O\times 17 times \frac{5}{5}.
\frac{5O\times 17+\sqrt{15}}{5}
Since \frac{5O\times 17}{5} and \frac{\sqrt{15}}{5} have the same denominator, add them by adding their numerators.
\frac{85O+\sqrt{15}}{5}
Do the multiplications in 5O\times 17+\sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}