Evaluate
17O+\frac{\sqrt{1245}}{50}
Differentiate w.r.t. O
17
Share
Copied to clipboard
O\times 17+3\sqrt{\frac{0.83}{15}}
Subtract 0.17 from 1 to get 0.83.
O\times 17+3\sqrt{\frac{83}{1500}}
Expand \frac{0.83}{15} by multiplying both numerator and the denominator by 100.
O\times 17+3\times \frac{\sqrt{83}}{\sqrt{1500}}
Rewrite the square root of the division \sqrt{\frac{83}{1500}} as the division of square roots \frac{\sqrt{83}}{\sqrt{1500}}.
O\times 17+3\times \frac{\sqrt{83}}{10\sqrt{15}}
Factor 1500=10^{2}\times 15. Rewrite the square root of the product \sqrt{10^{2}\times 15} as the product of square roots \sqrt{10^{2}}\sqrt{15}. Take the square root of 10^{2}.
O\times 17+3\times \frac{\sqrt{83}\sqrt{15}}{10\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{83}}{10\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
O\times 17+3\times \frac{\sqrt{83}\sqrt{15}}{10\times 15}
The square of \sqrt{15} is 15.
O\times 17+3\times \frac{\sqrt{1245}}{10\times 15}
To multiply \sqrt{83} and \sqrt{15}, multiply the numbers under the square root.
O\times 17+3\times \frac{\sqrt{1245}}{150}
Multiply 10 and 15 to get 150.
O\times 17+\frac{\sqrt{1245}}{50}
Cancel out 150, the greatest common factor in 3 and 150.
\frac{50O\times 17}{50}+\frac{\sqrt{1245}}{50}
To add or subtract expressions, expand them to make their denominators the same. Multiply O\times 17 times \frac{50}{50}.
\frac{50O\times 17+\sqrt{1245}}{50}
Since \frac{50O\times 17}{50} and \frac{\sqrt{1245}}{50} have the same denominator, add them by adding their numerators.
\frac{850O+\sqrt{1245}}{50}
Do the multiplications in 50O\times 17+\sqrt{1245}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}