Solve for N (complex solution)
\left\{\begin{matrix}N=\frac{y}{u^{2}}\text{, }&u\neq 0\\N\in \mathrm{C}\text{, }&y=0\text{ and }u=0\end{matrix}\right.
Solve for N
\left\{\begin{matrix}N=\frac{y}{u^{2}}\text{, }&u\neq 0\\N\in \mathrm{R}\text{, }&y=0\text{ and }u=0\end{matrix}\right.
Solve for u (complex solution)
\left\{\begin{matrix}u=-N^{-\frac{1}{2}}\sqrt{y}\text{; }u=N^{-\frac{1}{2}}\sqrt{y}\text{, }&N\neq 0\\u\in \mathrm{C}\text{, }&y=0\text{ and }N=0\end{matrix}\right.
Solve for u
\left\{\begin{matrix}u=\sqrt{\frac{y}{N}}\text{; }u=-\sqrt{\frac{y}{N}}\text{, }&\left(y\geq 0\text{ and }N>0\right)\text{ or }\left(y\leq 0\text{ and }N<0\right)\\u\in \mathrm{R}\text{, }&y=0\text{ and }N=0\end{matrix}\right.
Graph
Share
Copied to clipboard
u^{2}N=y
The equation is in standard form.
\frac{u^{2}N}{u^{2}}=\frac{y}{u^{2}}
Divide both sides by u^{2}.
N=\frac{y}{u^{2}}
Dividing by u^{2} undoes the multiplication by u^{2}.
u^{2}N=y
The equation is in standard form.
\frac{u^{2}N}{u^{2}}=\frac{y}{u^{2}}
Divide both sides by u^{2}.
N=\frac{y}{u^{2}}
Dividing by u^{2} undoes the multiplication by u^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}