Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{1446929495000000000000000000000N_{r}}{91621719ex}\text{, }&x\neq 0\\p\in \mathrm{C}\text{, }&N_{r}=0\text{ and }x=0\end{matrix}\right.
Solve for N_r
N_{r}=\frac{91621719epx}{1446929495000000000000000000000}
Solve for p
\left\{\begin{matrix}p=\frac{1446929495000000000000000000000N_{r}}{91621719ex}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&N_{r}=0\text{ and }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
N_{r}=\frac{6.022\times \frac{1}{100000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
N_{r}=\frac{\frac{3011}{50000000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 6.022 and \frac{1}{100000000000000000000000} to get \frac{3011}{50000000000000000000000000}.
N_{r}=\frac{\frac{5609493}{5000000000000000000000000000}}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply \frac{3011}{50000000000000000000000000} and 18.63 to get \frac{5609493}{5000000000000000000000000000}.
N_{r}=\frac{5609493}{5000000000000000000000000000\times 196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Express \frac{\frac{5609493}{5000000000000000000000000000}}{196.9} as a single fraction.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 5000000000000000000000000000 and 196.9 to get 984500000000000000000000000000.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times \frac{1}{100000}\times 1023}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{431}{5000000}\times 1023}
Multiply 8.62 and \frac{1}{100000} to get \frac{431}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{440913}{5000000}}
Multiply \frac{431}{5000000} and 1023 to get \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times 0.98\times \frac{5000000}{440913}
Divide 0.98 by \frac{440913}{5000000} by multiplying 0.98 by the reciprocal of \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{4900000}{440913}
Multiply 0.98 and \frac{5000000}{440913} to get \frac{4900000}{440913}.
N_{r}=\frac{91621719}{1446929495000000000000000000000}exp
Multiply \frac{5609493}{984500000000000000000000000000} and \frac{4900000}{440913} to get \frac{91621719}{1446929495000000000000000000000}.
\frac{91621719}{1446929495000000000000000000000}exp=N_{r}
Swap sides so that all variable terms are on the left hand side.
\frac{91621719ex}{1446929495000000000000000000000}p=N_{r}
The equation is in standard form.
\frac{1446929495000000000000000000000\times \frac{91621719ex}{1446929495000000000000000000000}p}{91621719ex}=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Divide both sides by \frac{91621719}{1446929495000000000000000000000}ex.
p=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Dividing by \frac{91621719}{1446929495000000000000000000000}ex undoes the multiplication by \frac{91621719}{1446929495000000000000000000000}ex.
N_{r}=\frac{6.022\times \frac{1}{100000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
N_{r}=\frac{\frac{3011}{50000000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 6.022 and \frac{1}{100000000000000000000000} to get \frac{3011}{50000000000000000000000000}.
N_{r}=\frac{\frac{5609493}{5000000000000000000000000000}}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply \frac{3011}{50000000000000000000000000} and 18.63 to get \frac{5609493}{5000000000000000000000000000}.
N_{r}=\frac{5609493}{5000000000000000000000000000\times 196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Express \frac{\frac{5609493}{5000000000000000000000000000}}{196.9} as a single fraction.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 5000000000000000000000000000 and 196.9 to get 984500000000000000000000000000.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times \frac{1}{100000}\times 1023}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{431}{5000000}\times 1023}
Multiply 8.62 and \frac{1}{100000} to get \frac{431}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{440913}{5000000}}
Multiply \frac{431}{5000000} and 1023 to get \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times 0.98\times \frac{5000000}{440913}
Divide 0.98 by \frac{440913}{5000000} by multiplying 0.98 by the reciprocal of \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{4900000}{440913}
Multiply 0.98 and \frac{5000000}{440913} to get \frac{4900000}{440913}.
N_{r}=\frac{91621719}{1446929495000000000000000000000}exp
Multiply \frac{5609493}{984500000000000000000000000000} and \frac{4900000}{440913} to get \frac{91621719}{1446929495000000000000000000000}.
N_{r}=\frac{6.022\times \frac{1}{100000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
N_{r}=\frac{\frac{3011}{50000000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 6.022 and \frac{1}{100000000000000000000000} to get \frac{3011}{50000000000000000000000000}.
N_{r}=\frac{\frac{5609493}{5000000000000000000000000000}}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply \frac{3011}{50000000000000000000000000} and 18.63 to get \frac{5609493}{5000000000000000000000000000}.
N_{r}=\frac{5609493}{5000000000000000000000000000\times 196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Express \frac{\frac{5609493}{5000000000000000000000000000}}{196.9} as a single fraction.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 5000000000000000000000000000 and 196.9 to get 984500000000000000000000000000.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times \frac{1}{100000}\times 1023}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{431}{5000000}\times 1023}
Multiply 8.62 and \frac{1}{100000} to get \frac{431}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{440913}{5000000}}
Multiply \frac{431}{5000000} and 1023 to get \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times 0.98\times \frac{5000000}{440913}
Divide 0.98 by \frac{440913}{5000000} by multiplying 0.98 by the reciprocal of \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{4900000}{440913}
Multiply 0.98 and \frac{5000000}{440913} to get \frac{4900000}{440913}.
N_{r}=\frac{91621719}{1446929495000000000000000000000}exp
Multiply \frac{5609493}{984500000000000000000000000000} and \frac{4900000}{440913} to get \frac{91621719}{1446929495000000000000000000000}.
\frac{91621719}{1446929495000000000000000000000}exp=N_{r}
Swap sides so that all variable terms are on the left hand side.
\frac{91621719ex}{1446929495000000000000000000000}p=N_{r}
The equation is in standard form.
\frac{1446929495000000000000000000000\times \frac{91621719ex}{1446929495000000000000000000000}p}{91621719ex}=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Divide both sides by \frac{91621719}{1446929495000000000000000000000}ex.
p=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Dividing by \frac{91621719}{1446929495000000000000000000000}ex undoes the multiplication by \frac{91621719}{1446929495000000000000000000000}ex.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}