Skip to main content
Solve for p (complex solution)
Tick mark Image
Solve for N_r
Tick mark Image
Solve for p
Tick mark Image
Graph

Similar Problems from Web Search

Share

N_{r}=\frac{6.022\times \frac{1}{100000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
N_{r}=\frac{\frac{3011}{50000000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 6.022 and \frac{1}{100000000000000000000000} to get \frac{3011}{50000000000000000000000000}.
N_{r}=\frac{\frac{5609493}{5000000000000000000000000000}}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply \frac{3011}{50000000000000000000000000} and 18.63 to get \frac{5609493}{5000000000000000000000000000}.
N_{r}=\frac{5609493}{5000000000000000000000000000\times 196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Express \frac{\frac{5609493}{5000000000000000000000000000}}{196.9} as a single fraction.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 5000000000000000000000000000 and 196.9 to get 984500000000000000000000000000.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times \frac{1}{100000}\times 1023}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{431}{5000000}\times 1023}
Multiply 8.62 and \frac{1}{100000} to get \frac{431}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{440913}{5000000}}
Multiply \frac{431}{5000000} and 1023 to get \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times 0.98\times \frac{5000000}{440913}
Divide 0.98 by \frac{440913}{5000000} by multiplying 0.98 by the reciprocal of \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{4900000}{440913}
Multiply 0.98 and \frac{5000000}{440913} to get \frac{4900000}{440913}.
N_{r}=\frac{91621719}{1446929495000000000000000000000}exp
Multiply \frac{5609493}{984500000000000000000000000000} and \frac{4900000}{440913} to get \frac{91621719}{1446929495000000000000000000000}.
\frac{91621719}{1446929495000000000000000000000}exp=N_{r}
Swap sides so that all variable terms are on the left hand side.
\frac{91621719ex}{1446929495000000000000000000000}p=N_{r}
The equation is in standard form.
\frac{1446929495000000000000000000000\times \frac{91621719ex}{1446929495000000000000000000000}p}{91621719ex}=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Divide both sides by \frac{91621719}{1446929495000000000000000000000}ex.
p=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Dividing by \frac{91621719}{1446929495000000000000000000000}ex undoes the multiplication by \frac{91621719}{1446929495000000000000000000000}ex.
N_{r}=\frac{6.022\times \frac{1}{100000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
N_{r}=\frac{\frac{3011}{50000000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 6.022 and \frac{1}{100000000000000000000000} to get \frac{3011}{50000000000000000000000000}.
N_{r}=\frac{\frac{5609493}{5000000000000000000000000000}}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply \frac{3011}{50000000000000000000000000} and 18.63 to get \frac{5609493}{5000000000000000000000000000}.
N_{r}=\frac{5609493}{5000000000000000000000000000\times 196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Express \frac{\frac{5609493}{5000000000000000000000000000}}{196.9} as a single fraction.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 5000000000000000000000000000 and 196.9 to get 984500000000000000000000000000.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times \frac{1}{100000}\times 1023}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{431}{5000000}\times 1023}
Multiply 8.62 and \frac{1}{100000} to get \frac{431}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{440913}{5000000}}
Multiply \frac{431}{5000000} and 1023 to get \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times 0.98\times \frac{5000000}{440913}
Divide 0.98 by \frac{440913}{5000000} by multiplying 0.98 by the reciprocal of \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{4900000}{440913}
Multiply 0.98 and \frac{5000000}{440913} to get \frac{4900000}{440913}.
N_{r}=\frac{91621719}{1446929495000000000000000000000}exp
Multiply \frac{5609493}{984500000000000000000000000000} and \frac{4900000}{440913} to get \frac{91621719}{1446929495000000000000000000000}.
N_{r}=\frac{6.022\times \frac{1}{100000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Calculate 10 to the power of -23 and get \frac{1}{100000000000000000000000}.
N_{r}=\frac{\frac{3011}{50000000000000000000000000}\times 18.63}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 6.022 and \frac{1}{100000000000000000000000} to get \frac{3011}{50000000000000000000000000}.
N_{r}=\frac{\frac{5609493}{5000000000000000000000000000}}{196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply \frac{3011}{50000000000000000000000000} and 18.63 to get \frac{5609493}{5000000000000000000000000000}.
N_{r}=\frac{5609493}{5000000000000000000000000000\times 196.9}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Express \frac{\frac{5609493}{5000000000000000000000000000}}{196.9} as a single fraction.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times 10^{-5}\times 1023}
Multiply 5000000000000000000000000000 and 196.9 to get 984500000000000000000000000000.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{8.62\times \frac{1}{100000}\times 1023}
Calculate 10 to the power of -5 and get \frac{1}{100000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{431}{5000000}\times 1023}
Multiply 8.62 and \frac{1}{100000} to get \frac{431}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{0.98}{\frac{440913}{5000000}}
Multiply \frac{431}{5000000} and 1023 to get \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times 0.98\times \frac{5000000}{440913}
Divide 0.98 by \frac{440913}{5000000} by multiplying 0.98 by the reciprocal of \frac{440913}{5000000}.
N_{r}=\frac{5609493}{984500000000000000000000000000}exp\times \frac{4900000}{440913}
Multiply 0.98 and \frac{5000000}{440913} to get \frac{4900000}{440913}.
N_{r}=\frac{91621719}{1446929495000000000000000000000}exp
Multiply \frac{5609493}{984500000000000000000000000000} and \frac{4900000}{440913} to get \frac{91621719}{1446929495000000000000000000000}.
\frac{91621719}{1446929495000000000000000000000}exp=N_{r}
Swap sides so that all variable terms are on the left hand side.
\frac{91621719ex}{1446929495000000000000000000000}p=N_{r}
The equation is in standard form.
\frac{1446929495000000000000000000000\times \frac{91621719ex}{1446929495000000000000000000000}p}{91621719ex}=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Divide both sides by \frac{91621719}{1446929495000000000000000000000}ex.
p=\frac{1446929495000000000000000000000N_{r}}{91621719ex}
Dividing by \frac{91621719}{1446929495000000000000000000000}ex undoes the multiplication by \frac{91621719}{1446929495000000000000000000000}ex.