Skip to main content
Solve for N
Tick mark Image
Solve for P
Tick mark Image

Similar Problems from Web Search

Share

NPV\left(r+1\right)^{4}=550000\left(r+1\right)^{3}\times 500000\times \frac{500000}{\left(1+r\right)^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Multiply both sides of the equation by \left(r+1\right)^{4}, the least common multiple of 1+r,\left(1+r\right)^{2},\left(1+r\right)^{3},\left(1+r\right)^{4}.
NPV\left(r+1\right)^{4}=550000\left(r^{3}+3r^{2}+3r+1\right)\times 500000\times \frac{500000}{\left(1+r\right)^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(r+1\right)^{3}.
NPV\left(r+1\right)^{4}=275000000000\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{\left(1+r\right)^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Multiply 550000 and 500000 to get 275000000000.
NPV\left(r+1\right)^{4}=275000000000\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{1+2r+r^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+r\right)^{2}.
NPV\left(r+1\right)^{4}=275000000000\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{1+2r+r^{2}}\times \frac{500000}{1+3r+3r^{2}+r^{3}}-1000000
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+r\right)^{3}.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 500000}{1+2r+r^{2}}\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{1+3r+3r^{2}+r^{3}}-1000000
Express 275000000000\times \frac{500000}{1+2r+r^{2}} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}\left(r^{3}+3r^{2}+3r+1\right)-1000000
Multiply \frac{275000000000\times 500000}{1+2r+r^{2}} times \frac{500000}{1+3r+3r^{2}+r^{3}} by multiplying numerator times numerator and denominator times denominator.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Use the distributive property to multiply \frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} by r^{3}+3r^{2}+3r+1.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 250000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Calculate 500000 to the power of 2 and get 250000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 250000000000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 250000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Calculate 500000 to the power of 2 and get 250000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 250000000000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express 3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express \frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 250000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Calculate 500000 to the power of 2 and get 250000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 250000000000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express 3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express \frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{137500000000000000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 500000 to get 137500000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 137500000000000000 and 500000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Since \frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} and \frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} have the same denominator, add them by adding their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Do the multiplications in 68750000000000000000000r^{3}+3\times 68750000000000000000000r^{2}.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Since \frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} and \frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} have the same denominator, add them by adding their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Do the multiplications in 68750000000000000000000r^{3}+206250000000000000000000r^{2}+3\times 68750000000000000000000r.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r+68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Since \frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} and \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} have the same denominator, add them by adding their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000\left(r+1\right)^{3}}{\left(r+1\right)^{2}\left(r+1\right)^{3}}-1000000
Factor the expressions that are not already factored in \frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r+68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000}{\left(r+1\right)^{2}}-1000000
Cancel out \left(r+1\right)\left(r+1\right)^{2} in both numerator and denominator.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000}{\left(r+1\right)^{2}}-\frac{1000000\left(r+1\right)^{2}}{\left(r+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1000000 times \frac{\left(r+1\right)^{2}}{\left(r+1\right)^{2}}.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000-1000000\left(r+1\right)^{2}}{\left(r+1\right)^{2}}
Since \frac{68750000000000000000000}{\left(r+1\right)^{2}} and \frac{1000000\left(r+1\right)^{2}}{\left(r+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000-1000000r^{2}-2000000r-1000000}{\left(r+1\right)^{2}}
Do the multiplications in 68750000000000000000000-1000000\left(r+1\right)^{2}.
NPV\left(r+1\right)^{4}=\frac{68749999999999999000000-1000000r^{2}-2000000r}{\left(r+1\right)^{2}}
Combine like terms in 68750000000000000000000-1000000r^{2}-2000000r-1000000.
NPV\left(r+1\right)^{4}=\frac{68749999999999999000000-1000000r^{2}-2000000r}{r^{2}+2r+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
NPV\left(r+1\right)^{4}\left(r+1\right)^{2}=68749999999999999000000-1000000r^{2}-2000000r
Multiply both sides of the equation by \left(r+1\right)^{2}.
NPV\left(r+1\right)^{6}=68749999999999999000000-1000000r^{2}-2000000r
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
PV\left(r+1\right)^{6}N=68749999999999999000000-2000000r-1000000r^{2}
The equation is in standard form.
\frac{PV\left(r+1\right)^{6}N}{PV\left(r+1\right)^{6}}=\frac{68749999999999999000000-2000000r-1000000r^{2}}{PV\left(r+1\right)^{6}}
Divide both sides by PV\left(r+1\right)^{6}.
N=\frac{68749999999999999000000-2000000r-1000000r^{2}}{PV\left(r+1\right)^{6}}
Dividing by PV\left(r+1\right)^{6} undoes the multiplication by PV\left(r+1\right)^{6}.
N=\frac{1000000\left(68749999999999999-2r-r^{2}\right)}{PV\left(r+1\right)^{6}}
Divide 68749999999999999000000-1000000r^{2}-2000000r by PV\left(r+1\right)^{6}.
NPV\left(r+1\right)^{4}=550000\left(r+1\right)^{3}\times 500000\times \frac{500000}{\left(1+r\right)^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Multiply both sides of the equation by \left(r+1\right)^{4}, the least common multiple of 1+r,\left(1+r\right)^{2},\left(1+r\right)^{3},\left(1+r\right)^{4}.
NPV\left(r+1\right)^{4}=550000\left(r^{3}+3r^{2}+3r+1\right)\times 500000\times \frac{500000}{\left(1+r\right)^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(r+1\right)^{3}.
NPV\left(r+1\right)^{4}=275000000000\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{\left(1+r\right)^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Multiply 550000 and 500000 to get 275000000000.
NPV\left(r+1\right)^{4}=275000000000\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{1+2r+r^{2}}\times \frac{500000}{\left(1+r\right)^{3}}-1000000
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+r\right)^{2}.
NPV\left(r+1\right)^{4}=275000000000\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{1+2r+r^{2}}\times \frac{500000}{1+3r+3r^{2}+r^{3}}-1000000
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(1+r\right)^{3}.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 500000}{1+2r+r^{2}}\left(r^{3}+3r^{2}+3r+1\right)\times \frac{500000}{1+3r+3r^{2}+r^{3}}-1000000
Express 275000000000\times \frac{500000}{1+2r+r^{2}} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}\left(r^{3}+3r^{2}+3r+1\right)-1000000
Multiply \frac{275000000000\times 500000}{1+2r+r^{2}} times \frac{500000}{1+3r+3r^{2}+r^{3}} by multiplying numerator times numerator and denominator times denominator.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Use the distributive property to multiply \frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} by r^{3}+3r^{2}+3r+1.
NPV\left(r+1\right)^{4}=\frac{275000000000\times 250000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Calculate 500000 to the power of 2 and get 250000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 250000000000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{3} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 250000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Calculate 500000 to the power of 2 and get 250000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 250000000000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express 3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 500000^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express \frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r^{2} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{275000000000\times 250000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Calculate 500000 to the power of 2 and get 250000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 250000000000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express 3\times \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{275000000000\times 500000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Express \frac{3\times 68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}r as a single fraction.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{137500000000000000\times 500000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 275000000000 and 500000 to get 137500000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Multiply 137500000000000000 and 500000 to get 68750000000000000000000.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Since \frac{68750000000000000000000r^{3}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} and \frac{3\times 68750000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} have the same denominator, add them by adding their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Do the multiplications in 68750000000000000000000r^{3}+3\times 68750000000000000000000r^{2}.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Since \frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} and \frac{3\times 68750000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} have the same denominator, add them by adding their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}+\frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Do the multiplications in 68750000000000000000000r^{3}+206250000000000000000000r^{2}+3\times 68750000000000000000000r.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r+68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}-1000000
Since \frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} and \frac{68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)} have the same denominator, add them by adding their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000\left(r+1\right)^{3}}{\left(r+1\right)^{2}\left(r+1\right)^{3}}-1000000
Factor the expressions that are not already factored in \frac{68750000000000000000000r^{3}+206250000000000000000000r^{2}+206250000000000000000000r+68750000000000000000000}{\left(1+2r+r^{2}\right)\left(1+3r+3r^{2}+r^{3}\right)}.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000}{\left(r+1\right)^{2}}-1000000
Cancel out \left(r+1\right)\left(r+1\right)^{2} in both numerator and denominator.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000}{\left(r+1\right)^{2}}-\frac{1000000\left(r+1\right)^{2}}{\left(r+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1000000 times \frac{\left(r+1\right)^{2}}{\left(r+1\right)^{2}}.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000-1000000\left(r+1\right)^{2}}{\left(r+1\right)^{2}}
Since \frac{68750000000000000000000}{\left(r+1\right)^{2}} and \frac{1000000\left(r+1\right)^{2}}{\left(r+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
NPV\left(r+1\right)^{4}=\frac{68750000000000000000000-1000000r^{2}-2000000r-1000000}{\left(r+1\right)^{2}}
Do the multiplications in 68750000000000000000000-1000000\left(r+1\right)^{2}.
NPV\left(r+1\right)^{4}=\frac{68749999999999999000000-1000000r^{2}-2000000r}{\left(r+1\right)^{2}}
Combine like terms in 68750000000000000000000-1000000r^{2}-2000000r-1000000.
NPV\left(r+1\right)^{4}=\frac{68749999999999999000000-1000000r^{2}-2000000r}{r^{2}+2r+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(r+1\right)^{2}.
NPV\left(r+1\right)^{4}\left(r+1\right)^{2}=68749999999999999000000-1000000r^{2}-2000000r
Multiply both sides of the equation by \left(r+1\right)^{2}.
NPV\left(r+1\right)^{6}=68749999999999999000000-1000000r^{2}-2000000r
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
NV\left(r+1\right)^{6}P=68749999999999999000000-2000000r-1000000r^{2}
The equation is in standard form.
\frac{NV\left(r+1\right)^{6}P}{NV\left(r+1\right)^{6}}=\frac{68749999999999999000000-2000000r-1000000r^{2}}{NV\left(r+1\right)^{6}}
Divide both sides by NV\left(r+1\right)^{6}.
P=\frac{68749999999999999000000-2000000r-1000000r^{2}}{NV\left(r+1\right)^{6}}
Dividing by NV\left(r+1\right)^{6} undoes the multiplication by NV\left(r+1\right)^{6}.
P=\frac{1000000\left(68749999999999999-2r-r^{2}\right)}{NV\left(r+1\right)^{6}}
Divide 68749999999999999000000-1000000r^{2}-2000000r by NV\left(r+1\right)^{6}.