N P = ( x - 8,4 ) \quad N M =
Solve for M
\left\{\begin{matrix}M=\frac{P}{x-8,4}\text{, }&x\neq \frac{42}{5}\\M\in \mathrm{R}\text{, }&N=0\text{ or }\left(P=0\text{ and }x=\frac{42}{5}\right)\end{matrix}\right.
Solve for N
\left\{\begin{matrix}\\N=0\text{, }&\text{unconditionally}\\N\in \mathrm{R}\text{, }&P=M\left(x-8,4\right)\end{matrix}\right.
Graph
Share
Copied to clipboard
NP=\left(xN-8,4N\right)M
Use the distributive property to multiply x-8,4 by N.
NP=xNM-8,4NM
Use the distributive property to multiply xN-8,4N by M.
xNM-8,4NM=NP
Swap sides so that all variable terms are on the left hand side.
\left(xN-8,4N\right)M=NP
Combine all terms containing M.
\left(Nx-\frac{42N}{5}\right)M=NP
The equation is in standard form.
\frac{\left(Nx-\frac{42N}{5}\right)M}{Nx-\frac{42N}{5}}=\frac{NP}{Nx-\frac{42N}{5}}
Divide both sides by xN-8,4N.
M=\frac{NP}{Nx-\frac{42N}{5}}
Dividing by xN-8,4N undoes the multiplication by xN-8,4N.
M=\frac{P}{x-8,4}
Divide NP by xN-8,4N.
NP=\left(xN-8,4N\right)M
Use the distributive property to multiply x-8,4 by N.
NP=xNM-8,4NM
Use the distributive property to multiply xN-8,4N by M.
NP-xNM=-8,4NM
Subtract xNM from both sides.
NP-xNM+8,4NM=0
Add 8,4NM to both sides.
-MNx+NP+8,4MN=0
Reorder the terms.
\left(-Mx+P+8,4M\right)N=0
Combine all terms containing N.
\left(-Mx+\frac{42M}{5}+P\right)N=0
The equation is in standard form.
N=0
Divide 0 by -Mx+P+8,4M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}