Solve for K
K=N-QG^{2}
G\neq 0
Solve for G
\left\{\begin{matrix}G=\sqrt{-\frac{K-N}{Q}}\text{; }G=-\sqrt{-\frac{K-N}{Q}}\text{, }&Q<0\text{ and }N<K\\G=\sqrt{\frac{N-K}{Q}}\text{; }G=-\sqrt{\frac{N-K}{Q}}\text{, }&Q>0\text{ and }N>K\\G\neq 0\text{, }&N=K\text{ and }Q=0\end{matrix}\right.
Share
Copied to clipboard
KG^{-\frac{5}{3}}=NG^{-\frac{5}{3}}-QG^{\frac{1}{3}}
Swap sides so that all variable terms are on the left hand side.
G^{-\frac{5}{3}}K=G^{-\frac{5}{3}}N-\sqrt[3]{G}Q
Reorder the terms.
G^{-\frac{5}{3}}K=-\sqrt[3]{G}Q+G^{-\frac{5}{3}}N
Reorder the terms.
\frac{1}{G^{\frac{5}{3}}}K=-\sqrt[3]{G}Q+\frac{N}{G^{\frac{5}{3}}}
The equation is in standard form.
\frac{\frac{1}{G^{\frac{5}{3}}}KG^{\frac{5}{3}}}{1}=\frac{N-QG^{2}}{G^{\frac{5}{3}}\times \frac{1}{G^{\frac{5}{3}}}}
Divide both sides by G^{-\frac{5}{3}}.
K=\frac{N-QG^{2}}{G^{\frac{5}{3}}\times \frac{1}{G^{\frac{5}{3}}}}
Dividing by G^{-\frac{5}{3}} undoes the multiplication by G^{-\frac{5}{3}}.
K=N-QG^{2}
Divide \frac{-QG^{2}+N}{G^{\frac{5}{3}}} by G^{-\frac{5}{3}}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}