Solve for N
N=\frac{25}{289}+\frac{24}{289x^{2}}
x\neq 0
Solve for x (complex solution)
x=-2\sqrt{6}\left(289N-25\right)^{-\frac{1}{2}}
x=2\sqrt{6}\left(289N-25\right)^{-\frac{1}{2}}\text{, }N\neq \frac{25}{289}
Solve for x
x=2\sqrt{\frac{6}{289N-25}}
x=-2\sqrt{\frac{6}{289N-25}}\text{, }N>\frac{25}{289}
Graph
Share
Copied to clipboard
N\times 17^{2}x^{2}-\left(5x\right)^{2}=24
Expand \left(17x\right)^{2}.
N\times 289x^{2}-\left(5x\right)^{2}=24
Calculate 17 to the power of 2 and get 289.
N\times 289x^{2}-5^{2}x^{2}=24
Expand \left(5x\right)^{2}.
N\times 289x^{2}-25x^{2}=24
Calculate 5 to the power of 2 and get 25.
N\times 289x^{2}=24+25x^{2}
Add 25x^{2} to both sides.
289x^{2}N=25x^{2}+24
The equation is in standard form.
\frac{289x^{2}N}{289x^{2}}=\frac{25x^{2}+24}{289x^{2}}
Divide both sides by 289x^{2}.
N=\frac{25x^{2}+24}{289x^{2}}
Dividing by 289x^{2} undoes the multiplication by 289x^{2}.
N=\frac{25}{289}+\frac{24}{289x^{2}}
Divide 24+25x^{2} by 289x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}