Skip to main content
Solve for l
Tick mark Image
Solve for N
Tick mark Image

Share

lIm(\sqrt{4n^{2}+1}-\sqrt[3]{8n^{3}+n})=N
Swap sides so that all variable terms are on the left hand side.
\left(Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n})\right)l=N
The equation is in standard form.
\frac{\left(Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n})\right)l}{Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n})}=\frac{N}{Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n})}
Divide both sides by Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n}).
l=\frac{N}{Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n})}
Dividing by Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n}) undoes the multiplication by Im(\sqrt{4n^{2}+1})-Im(\sqrt[3]{8n^{3}+n}).