Solve for α
\alpha =\frac{360}{N+1}
N\neq -1
Solve for N
N=-1+\frac{360}{\alpha }
\alpha \neq 0
Share
Copied to clipboard
N\alpha =360+\alpha \left(-1\right)
Variable \alpha cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by \alpha .
N\alpha -\alpha \left(-1\right)=360
Subtract \alpha \left(-1\right) from both sides.
N\alpha +\alpha =360
Multiply -1 and -1 to get 1.
\left(N+1\right)\alpha =360
Combine all terms containing \alpha .
\frac{\left(N+1\right)\alpha }{N+1}=\frac{360}{N+1}
Divide both sides by N+1.
\alpha =\frac{360}{N+1}
Dividing by N+1 undoes the multiplication by N+1.
\alpha =\frac{360}{N+1}\text{, }\alpha \neq 0
Variable \alpha cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}