Solve for M_o
M_{o} = \frac{193}{2} = 96\frac{1}{2} = 96.5
Assign M_o
M_{o}≔\frac{193}{2}
Share
Copied to clipboard
M_{o}=90+10\times \frac{13}{45-32+45-38}
Subtract 32 from 45 to get 13.
M_{o}=90+10\times \frac{13}{13+45-38}
Subtract 32 from 45 to get 13.
M_{o}=90+10\times \frac{13}{58-38}
Add 13 and 45 to get 58.
M_{o}=90+10\times \frac{13}{20}
Subtract 38 from 58 to get 20.
M_{o}=90+\frac{10\times 13}{20}
Express 10\times \frac{13}{20} as a single fraction.
M_{o}=90+\frac{130}{20}
Multiply 10 and 13 to get 130.
M_{o}=90+\frac{13}{2}
Reduce the fraction \frac{130}{20} to lowest terms by extracting and canceling out 10.
M_{o}=\frac{180}{2}+\frac{13}{2}
Convert 90 to fraction \frac{180}{2}.
M_{o}=\frac{180+13}{2}
Since \frac{180}{2} and \frac{13}{2} have the same denominator, add them by adding their numerators.
M_{o}=\frac{193}{2}
Add 180 and 13 to get 193.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}