Solve for M_2
M_{2}=-\frac{1597}{2361}\approx -0.676408302
Assign M_2
M_{2}≔-\frac{1597}{2361}
Share
Copied to clipboard
M_{2}=\frac{-2.592-\frac{1}{3}\times 5}{5+1.296}
Multiply -2 and 1.296 to get -2.592.
M_{2}=\frac{-2.592+\frac{-5}{3}}{5+1.296}
Express -\frac{1}{3}\times 5 as a single fraction.
M_{2}=\frac{-2.592-\frac{5}{3}}{5+1.296}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
M_{2}=\frac{-\frac{324}{125}-\frac{5}{3}}{5+1.296}
Convert decimal number -2.592 to fraction -\frac{2592}{1000}. Reduce the fraction -\frac{2592}{1000} to lowest terms by extracting and canceling out 8.
M_{2}=\frac{-\frac{972}{375}-\frac{625}{375}}{5+1.296}
Least common multiple of 125 and 3 is 375. Convert -\frac{324}{125} and \frac{5}{3} to fractions with denominator 375.
M_{2}=\frac{\frac{-972-625}{375}}{5+1.296}
Since -\frac{972}{375} and \frac{625}{375} have the same denominator, subtract them by subtracting their numerators.
M_{2}=\frac{-\frac{1597}{375}}{5+1.296}
Subtract 625 from -972 to get -1597.
M_{2}=\frac{-\frac{1597}{375}}{6.296}
Add 5 and 1.296 to get 6.296.
M_{2}=\frac{-1597}{375\times 6.296}
Express \frac{-\frac{1597}{375}}{6.296} as a single fraction.
M_{2}=\frac{-1597}{2361}
Multiply 375 and 6.296 to get 2361.
M_{2}=-\frac{1597}{2361}
Fraction \frac{-1597}{2361} can be rewritten as -\frac{1597}{2361} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}