Solve for M (complex solution)
\left\{\begin{matrix}M=-\frac{mv}{V}\text{, }&V\neq 0\\M\in \mathrm{C}\text{, }&\left(m=0\text{ or }v=0\right)\text{ and }V=0\end{matrix}\right.
Solve for V (complex solution)
\left\{\begin{matrix}V=-\frac{mv}{M}\text{, }&M\neq 0\\V\in \mathrm{C}\text{, }&\left(m=0\text{ or }v=0\right)\text{ and }M=0\end{matrix}\right.
Solve for M
\left\{\begin{matrix}M=-\frac{mv}{V}\text{, }&V\neq 0\\M\in \mathrm{R}\text{, }&\left(m=0\text{ or }v=0\right)\text{ and }V=0\end{matrix}\right.
Solve for V
\left\{\begin{matrix}V=-\frac{mv}{M}\text{, }&M\neq 0\\V\in \mathrm{R}\text{, }&\left(m=0\text{ or }v=0\right)\text{ and }M=0\end{matrix}\right.
Share
Copied to clipboard
MV=-mv
Reorder the terms.
VM=-mv
The equation is in standard form.
\frac{VM}{V}=-\frac{mv}{V}
Divide both sides by V.
M=-\frac{mv}{V}
Dividing by V undoes the multiplication by V.
MV=-mv
Reorder the terms.
\frac{MV}{M}=-\frac{mv}{M}
Divide both sides by M.
V=-\frac{mv}{M}
Dividing by M undoes the multiplication by M.
MV=-mv
Reorder the terms.
VM=-mv
The equation is in standard form.
\frac{VM}{V}=-\frac{mv}{V}
Divide both sides by V.
M=-\frac{mv}{V}
Dividing by V undoes the multiplication by V.
MV=-mv
Reorder the terms.
\frac{MV}{M}=-\frac{mv}{M}
Divide both sides by M.
V=-\frac{mv}{M}
Dividing by M undoes the multiplication by M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}