Solve for M
M=\frac{86700}{N}
N\neq 0
Solve for N
N=\frac{86700}{M}
M\neq 0
Share
Copied to clipboard
MN=72000+1500\times \frac{48\times 49}{2\times 12}\times \frac{10}{100}
Multiply 1500 and 48 to get 72000.
MN=72000+1500\times 2\times 49\times \frac{10}{100}
Cancel out 2\times 12 in both numerator and denominator.
MN=72000+1500\times 98\times \frac{10}{100}
Multiply 2 and 49 to get 98.
MN=72000+147000\times \frac{10}{100}
Multiply 1500 and 98 to get 147000.
MN=72000+147000\times \frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
MN=72000+14700
Multiply 147000 and \frac{1}{10} to get 14700.
MN=86700
Add 72000 and 14700 to get 86700.
NM=86700
The equation is in standard form.
\frac{NM}{N}=\frac{86700}{N}
Divide both sides by N.
M=\frac{86700}{N}
Dividing by N undoes the multiplication by N.
MN=72000+1500\times \frac{48\times 49}{2\times 12}\times \frac{10}{100}
Multiply 1500 and 48 to get 72000.
MN=72000+1500\times 2\times 49\times \frac{10}{100}
Cancel out 2\times 12 in both numerator and denominator.
MN=72000+1500\times 98\times \frac{10}{100}
Multiply 2 and 49 to get 98.
MN=72000+147000\times \frac{10}{100}
Multiply 1500 and 98 to get 147000.
MN=72000+147000\times \frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
MN=72000+14700
Multiply 147000 and \frac{1}{10} to get 14700.
MN=86700
Add 72000 and 14700 to get 86700.
\frac{MN}{M}=\frac{86700}{M}
Divide both sides by M.
N=\frac{86700}{M}
Dividing by M undoes the multiplication by M.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}