Evaluate
\frac{367}{28}\approx 13.107142857
Factor
\frac{367}{2 ^ {2} \cdot 7} = 13\frac{3}{28} = 13.107142857142858
Share
Copied to clipboard
-\frac{1}{28}\times 4225+3\times 65-31
Calculate 65 to the power of 2 and get 4225.
\frac{-4225}{28}+3\times 65-31
Express -\frac{1}{28}\times 4225 as a single fraction.
-\frac{4225}{28}+3\times 65-31
Fraction \frac{-4225}{28} can be rewritten as -\frac{4225}{28} by extracting the negative sign.
-\frac{4225}{28}+195-31
Multiply 3 and 65 to get 195.
-\frac{4225}{28}+\frac{5460}{28}-31
Convert 195 to fraction \frac{5460}{28}.
\frac{-4225+5460}{28}-31
Since -\frac{4225}{28} and \frac{5460}{28} have the same denominator, add them by adding their numerators.
\frac{1235}{28}-31
Add -4225 and 5460 to get 1235.
\frac{1235}{28}-\frac{868}{28}
Convert 31 to fraction \frac{868}{28}.
\frac{1235-868}{28}
Since \frac{1235}{28} and \frac{868}{28} have the same denominator, subtract them by subtracting their numerators.
\frac{367}{28}
Subtract 868 from 1235 to get 367.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}