Skip to main content
Solve for M_0 (complex solution)
Tick mark Image
Solve for M_0
Tick mark Image
Solve for M (complex solution)
Tick mark Image
Solve for M
Tick mark Image

Similar Problems from Web Search

Share

M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Since \frac{c^{2}}{c^{2}} and \frac{v^{2}}{c^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
The equation is in standard form.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Divide both sides by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Dividing by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} undoes the multiplication by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\sqrt{-\frac{v^{2}}{c^{2}}+1}M
Divide M by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Since \frac{c^{2}}{c^{2}} and \frac{v^{2}}{c^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
The equation is in standard form.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Divide both sides by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Dividing by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} undoes the multiplication by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\left(c-v\right)\left(v+c\right)}}{|c|}
Divide M by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.