Solve for M_0 (complex solution)
M_{0}=\sqrt{-\left(\frac{v}{c}\right)^{2}+1}M
v\neq -c\text{ and }v\neq c\text{ and }c\neq 0
Solve for M_0
M_{0}=\frac{M\sqrt{c^{2}-v^{2}}}{|c|}
\left(v<c\text{ and }v>-c\text{ and }c\neq 0\text{ and }|v|<|c|\right)\text{ or }\left(v<-c\text{ and }v>c\text{ and }c\neq 0\text{ and }|v|<|c|\right)
Solve for M (complex solution)
M=\left(-\left(\frac{v}{c}\right)^{2}+1\right)^{-\frac{1}{2}}M_{0}
v\neq -c\text{ and }v\neq c\text{ and }c\neq 0
Solve for M
M=\frac{M_{0}|c|}{\sqrt{c^{2}-v^{2}}}
\left(|c|>|v|\text{ and }v<c\text{ and }v>-c\text{ and }c\neq 0\right)\text{ or }\left(|c|>|v|\text{ and }v<-c\text{ and }v>c\text{ and }c\neq 0\right)
Share
Copied to clipboard
M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Since \frac{c^{2}}{c^{2}} and \frac{v^{2}}{c^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
The equation is in standard form.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Divide both sides by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Dividing by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} undoes the multiplication by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\sqrt{-\frac{v^{2}}{c^{2}}+1}M
Divide M by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}}{c^{2}}-\frac{v^{2}}{c^{2}}}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{c^{2}}{c^{2}}.
M=\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}
Since \frac{c^{2}}{c^{2}} and \frac{v^{2}}{c^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{M_{0}}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}=M
Swap sides so that all variable terms are on the left hand side.
\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}=M
The equation is in standard form.
\frac{\frac{1}{\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}M_{0}\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Divide both sides by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\frac{c^{2}-v^{2}}{c^{2}}}}{1}
Dividing by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1} undoes the multiplication by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
M_{0}=\frac{M\sqrt{\left(c-v\right)\left(v+c\right)}}{|c|}
Divide M by \left(\sqrt{\left(c^{2}-v^{2}\right)c^{-2}}\right)^{-1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}