Solve for M
M=-80
x\neq -10
Solve for x
x\neq -10
M=-80\text{ and }x\neq -10
Graph
Share
Copied to clipboard
M=\frac{0}{10+x}-80
Subtract 5 from 5 to get 0.
M=\frac{0}{10+x}-\frac{80\left(10+x\right)}{10+x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 80 times \frac{10+x}{10+x}.
M=\frac{0-80\left(10+x\right)}{10+x}
Since \frac{0}{10+x} and \frac{80\left(10+x\right)}{10+x} have the same denominator, subtract them by subtracting their numerators.
M=\frac{-800-80x}{10+x}
Do the multiplications in 0-80\left(10+x\right).
M=\frac{80\left(-x-10\right)}{x+10}
Factor the expressions that are not already factored in \frac{-800-80x}{10+x}.
M=\frac{-80\left(x+10\right)}{x+10}
Extract the negative sign in -10-x.
M=-80
Cancel out x+10 in both numerator and denominator.
M\left(x+10\right)=5-5+\left(x+10\right)\left(-80\right)
Variable x cannot be equal to -10 since division by zero is not defined. Multiply both sides of the equation by x+10.
Mx+10M=5-5+\left(x+10\right)\left(-80\right)
Use the distributive property to multiply M by x+10.
Mx+10M=\left(x+10\right)\left(-80\right)
Subtract 5 from 5 to get 0.
Mx+10M=-80x-800
Use the distributive property to multiply x+10 by -80.
Mx+10M+80x=-800
Add 80x to both sides.
Mx+80x=-800-10M
Subtract 10M from both sides.
\left(M+80\right)x=-800-10M
Combine all terms containing x.
\left(M+80\right)x=-10M-800
The equation is in standard form.
\frac{\left(M+80\right)x}{M+80}=\frac{-10M-800}{M+80}
Divide both sides by M+80.
x=\frac{-10M-800}{M+80}
Dividing by M+80 undoes the multiplication by M+80.
x=-10
Divide -800-10M by M+80.
x\in \emptyset
Variable x cannot be equal to -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}