Solve for M
M = \frac{5}{4} = 1\frac{1}{4} = 1.25
Assign M
M≔\frac{5}{4}
Share
Copied to clipboard
M=\frac{\frac{3}{24}+\frac{14}{24}}{\frac{5}{6}-\frac{4}{15}}
Least common multiple of 8 and 12 is 24. Convert \frac{1}{8} and \frac{7}{12} to fractions with denominator 24.
M=\frac{\frac{3+14}{24}}{\frac{5}{6}-\frac{4}{15}}
Since \frac{3}{24} and \frac{14}{24} have the same denominator, add them by adding their numerators.
M=\frac{\frac{17}{24}}{\frac{5}{6}-\frac{4}{15}}
Add 3 and 14 to get 17.
M=\frac{\frac{17}{24}}{\frac{25}{30}-\frac{8}{30}}
Least common multiple of 6 and 15 is 30. Convert \frac{5}{6} and \frac{4}{15} to fractions with denominator 30.
M=\frac{\frac{17}{24}}{\frac{25-8}{30}}
Since \frac{25}{30} and \frac{8}{30} have the same denominator, subtract them by subtracting their numerators.
M=\frac{\frac{17}{24}}{\frac{17}{30}}
Subtract 8 from 25 to get 17.
M=\frac{17}{24}\times \frac{30}{17}
Divide \frac{17}{24} by \frac{17}{30} by multiplying \frac{17}{24} by the reciprocal of \frac{17}{30}.
M=\frac{17\times 30}{24\times 17}
Multiply \frac{17}{24} times \frac{30}{17} by multiplying numerator times numerator and denominator times denominator.
M=\frac{30}{24}
Cancel out 17 in both numerator and denominator.
M=\frac{5}{4}
Reduce the fraction \frac{30}{24} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}