Solve for L_0
\left\{\begin{matrix}L_{0}=\frac{L_{f}}{t\Delta \alpha +1}\text{, }&t=0\text{ or }\Delta =0\text{ or }\alpha \neq -\frac{1}{t\Delta }\\L_{0}\in \mathrm{R}\text{, }&L_{f}=0\text{ and }\alpha =-\frac{1}{t\Delta }\text{ and }t\neq 0\text{ and }\Delta \neq 0\end{matrix}\right.
Solve for L_f
L_{f}=L_{0}\left(t\Delta \alpha +1\right)
Share
Copied to clipboard
L_{f}=L_{0}+L_{0}\alpha \Delta t
Use the distributive property to multiply L_{0} by 1+\alpha \Delta t.
L_{0}+L_{0}\alpha \Delta t=L_{f}
Swap sides so that all variable terms are on the left hand side.
\left(1+\alpha \Delta t\right)L_{0}=L_{f}
Combine all terms containing L_{0}.
\left(t\Delta \alpha +1\right)L_{0}=L_{f}
The equation is in standard form.
\frac{\left(t\Delta \alpha +1\right)L_{0}}{t\Delta \alpha +1}=\frac{L_{f}}{t\Delta \alpha +1}
Divide both sides by 1+\alpha \Delta t.
L_{0}=\frac{L_{f}}{t\Delta \alpha +1}
Dividing by 1+\alpha \Delta t undoes the multiplication by 1+\alpha \Delta t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}