Solve for x, y (complex solution)
\left\{\begin{matrix}x=\frac{\sqrt{6L_{1}L_{2}+81}+9}{L_{1}}\text{, }y=-\frac{\sqrt{6L_{1}L_{2}+81}}{6}+\frac{1}{2}\text{, }&L_{1}\neq 0\\x=\frac{-\sqrt{6L_{1}L_{2}+81}+9}{L_{1}}\text{, }y=\frac{\sqrt{6L_{1}L_{2}+81}}{6}+\frac{1}{2}\text{, }&L_{1}\neq 0\text{ and }L_{2}\neq 0\\x=-\frac{L_{2}}{3}\text{, }y=2\text{, }&L_{2}\neq 0\text{ and }L_{1}=0\end{matrix}\right.
Solve for x, y
\left\{\begin{matrix}x=\frac{\sqrt{6L_{1}L_{2}+81}+9}{L_{1}}\text{, }y=-\frac{\sqrt{6L_{1}L_{2}+81}}{6}+\frac{1}{2}\text{, }&\left(L_{1}=-\frac{27}{2L_{2}}\text{ and }L_{2}\neq 0\right)\text{ or }\left(L_{1}\neq 0\text{ and }L_{1}\geq -\frac{27}{2L_{2}}\text{ and }L_{2}>0\right)\text{ or }\left(L_{1}\neq 0\text{ and }L_{1}\leq -\frac{27}{2L_{2}}\text{ and }L_{2}<0\right)\text{ or }\left(L_{1}\neq 0\text{ and }L_{2}=0\right)\\x=\frac{-\sqrt{6L_{1}L_{2}+81}+9}{L_{1}}\text{, }y=\frac{\sqrt{6L_{1}L_{2}+81}}{6}+\frac{1}{2}\text{, }&\left(L_{1}=-\frac{27}{2L_{2}}\text{ and }L_{2}\neq 0\right)\text{ or }\left(L_{1}\neq 0\text{ and }L_{1}\geq -\frac{27}{2L_{2}}\text{ and }L_{2}>0\right)\text{ or }\left(L_{1}\neq 0\text{ and }L_{1}\leq -\frac{27}{2L_{2}}\text{ and }L_{2}<0\right)\\x=-\frac{L_{2}}{3}\text{, }y=2\text{, }&L_{2}\neq 0\text{ and }L_{1}=0\end{matrix}\right.
Graph
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}