Factor
-5\left(x-\left(1200-10\sqrt{14370}\right)\right)\left(x-\left(10\sqrt{14370}+1200\right)\right)
Evaluate
-5x^{2}+12000x-15000
Graph
Share
Copied to clipboard
-5x^{2}+12000x-15000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12000±\sqrt{12000^{2}-4\left(-5\right)\left(-15000\right)}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12000±\sqrt{144000000-4\left(-5\right)\left(-15000\right)}}{2\left(-5\right)}
Square 12000.
x=\frac{-12000±\sqrt{144000000+20\left(-15000\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-12000±\sqrt{144000000-300000}}{2\left(-5\right)}
Multiply 20 times -15000.
x=\frac{-12000±\sqrt{143700000}}{2\left(-5\right)}
Add 144000000 to -300000.
x=\frac{-12000±100\sqrt{14370}}{2\left(-5\right)}
Take the square root of 143700000.
x=\frac{-12000±100\sqrt{14370}}{-10}
Multiply 2 times -5.
x=\frac{100\sqrt{14370}-12000}{-10}
Now solve the equation x=\frac{-12000±100\sqrt{14370}}{-10} when ± is plus. Add -12000 to 100\sqrt{14370}.
x=1200-10\sqrt{14370}
Divide -12000+100\sqrt{14370} by -10.
x=\frac{-100\sqrt{14370}-12000}{-10}
Now solve the equation x=\frac{-12000±100\sqrt{14370}}{-10} when ± is minus. Subtract 100\sqrt{14370} from -12000.
x=10\sqrt{14370}+1200
Divide -12000-100\sqrt{14370} by -10.
-5x^{2}+12000x-15000=-5\left(x-\left(1200-10\sqrt{14370}\right)\right)\left(x-\left(10\sqrt{14370}+1200\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1200-10\sqrt{14370} for x_{1} and 1200+10\sqrt{14370} for x_{2}.
x ^ 2 -2400x +3000 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 2400 rs = 3000
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1200 - u s = 1200 + u
Two numbers r and s sum up to 2400 exactly when the average of the two numbers is \frac{1}{2}*2400 = 1200. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath-gzdabgg4ehffg0hf.b01.azurefd.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1200 - u) (1200 + u) = 3000
To solve for unknown quantity u, substitute these in the product equation rs = 3000
1440000 - u^2 = 3000
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 3000-1440000 = -1437000
Simplify the expression by subtracting 1440000 on both sides
u^2 = 1437000 u = \pm\sqrt{1437000} = \pm \sqrt{1437000}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1200 - \sqrt{1437000} = 1.251 s = 1200 + \sqrt{1437000} = 2398.749
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}