Solve for L
L=5\sqrt{769}+75\approx 213.654246239
L=75-5\sqrt{769}\approx -63.654246239
Share
Copied to clipboard
L^{2}-150L-13600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
L=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\left(-13600\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -150 for b, and -13600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
L=\frac{-\left(-150\right)±\sqrt{22500-4\left(-13600\right)}}{2}
Square -150.
L=\frac{-\left(-150\right)±\sqrt{22500+54400}}{2}
Multiply -4 times -13600.
L=\frac{-\left(-150\right)±\sqrt{76900}}{2}
Add 22500 to 54400.
L=\frac{-\left(-150\right)±10\sqrt{769}}{2}
Take the square root of 76900.
L=\frac{150±10\sqrt{769}}{2}
The opposite of -150 is 150.
L=\frac{10\sqrt{769}+150}{2}
Now solve the equation L=\frac{150±10\sqrt{769}}{2} when ± is plus. Add 150 to 10\sqrt{769}.
L=5\sqrt{769}+75
Divide 150+10\sqrt{769} by 2.
L=\frac{150-10\sqrt{769}}{2}
Now solve the equation L=\frac{150±10\sqrt{769}}{2} when ± is minus. Subtract 10\sqrt{769} from 150.
L=75-5\sqrt{769}
Divide 150-10\sqrt{769} by 2.
L=5\sqrt{769}+75 L=75-5\sqrt{769}
The equation is now solved.
L^{2}-150L-13600=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
L^{2}-150L-13600-\left(-13600\right)=-\left(-13600\right)
Add 13600 to both sides of the equation.
L^{2}-150L=-\left(-13600\right)
Subtracting -13600 from itself leaves 0.
L^{2}-150L=13600
Subtract -13600 from 0.
L^{2}-150L+\left(-75\right)^{2}=13600+\left(-75\right)^{2}
Divide -150, the coefficient of the x term, by 2 to get -75. Then add the square of -75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
L^{2}-150L+5625=13600+5625
Square -75.
L^{2}-150L+5625=19225
Add 13600 to 5625.
\left(L-75\right)^{2}=19225
Factor L^{2}-150L+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(L-75\right)^{2}}=\sqrt{19225}
Take the square root of both sides of the equation.
L-75=5\sqrt{769} L-75=-5\sqrt{769}
Simplify.
L=5\sqrt{769}+75 L=75-5\sqrt{769}
Add 75 to both sides of the equation.
x ^ 2 -150x -13600 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = 150 rs = -13600
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 75 - u s = 75 + u
Two numbers r and s sum up to 150 exactly when the average of the two numbers is \frac{1}{2}*150 = 75. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(75 - u) (75 + u) = -13600
To solve for unknown quantity u, substitute these in the product equation rs = -13600
5625 - u^2 = -13600
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -13600-5625 = -19225
Simplify the expression by subtracting 5625 on both sides
u^2 = 19225 u = \pm\sqrt{19225} = \pm \sqrt{19225}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =75 - \sqrt{19225} = -63.654 s = 75 + \sqrt{19225} = 213.654
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}