Solve for a
\left\{\begin{matrix}a=\frac{2v\mu }{Lb}\text{, }&v\neq 0\text{ and }\mu \neq 0\text{ and }b\neq 0\text{ and }L\neq 0\\a\neq 0\text{, }&\left(v=0\text{ or }\mu =0\right)\text{ and }L=0\text{ and }b\neq 0\end{matrix}\right.
Solve for L
L=\frac{2v\mu }{ab}
b\neq 0\text{ and }a\neq 0
Share
Copied to clipboard
Lab=2\mu v
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab.
Lab=2v\mu
Reorder the terms.
Lba=2v\mu
The equation is in standard form.
\frac{Lba}{Lb}=\frac{2v\mu }{Lb}
Divide both sides by Lb.
a=\frac{2v\mu }{Lb}
Dividing by Lb undoes the multiplication by Lb.
a=\frac{2v\mu }{Lb}\text{, }a\neq 0
Variable a cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}