Solve for K
K=\frac{1}{50hw}
h\neq 0\text{ and }w\neq 0
Solve for h
h=\frac{1}{50Kw}
w\neq 0\text{ and }K\neq 0
Share
Copied to clipboard
1000Kwh=1200\times \frac{1}{60}
Multiply both sides of the equation by 1000.
1000Kwh=20
Multiply 1200 and \frac{1}{60} to get 20.
1000hwK=20
The equation is in standard form.
\frac{1000hwK}{1000hw}=\frac{20}{1000hw}
Divide both sides by 1000wh.
K=\frac{20}{1000hw}
Dividing by 1000wh undoes the multiplication by 1000wh.
K=\frac{1}{50hw}
Divide 20 by 1000wh.
1000Kwh=1200\times \frac{1}{60}
Multiply both sides of the equation by 1000.
1000Kwh=20
Multiply 1200 and \frac{1}{60} to get 20.
\frac{1000Kwh}{1000Kw}=\frac{20}{1000Kw}
Divide both sides by 1000Kw.
h=\frac{20}{1000Kw}
Dividing by 1000Kw undoes the multiplication by 1000Kw.
h=\frac{1}{50Kw}
Divide 20 by 1000Kw.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}