Solve for K
K=\frac{2\sqrt{5}}{L}
L\neq 0
Solve for L
L=\frac{2\sqrt{5}}{K}
K\neq 0
Share
Copied to clipboard
KL=\sqrt{\left(-2+6\right)^{2}+\left(4-2\right)^{2}}
The opposite of -6 is 6.
KL=\sqrt{4^{2}+\left(4-2\right)^{2}}
Add -2 and 6 to get 4.
KL=\sqrt{16+\left(4-2\right)^{2}}
Calculate 4 to the power of 2 and get 16.
KL=\sqrt{16+2^{2}}
Subtract 2 from 4 to get 2.
KL=\sqrt{16+4}
Calculate 2 to the power of 2 and get 4.
KL=\sqrt{20}
Add 16 and 4 to get 20.
KL=2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
LK=2\sqrt{5}
The equation is in standard form.
\frac{LK}{L}=\frac{2\sqrt{5}}{L}
Divide both sides by L.
K=\frac{2\sqrt{5}}{L}
Dividing by L undoes the multiplication by L.
KL=\sqrt{\left(-2+6\right)^{2}+\left(4-2\right)^{2}}
The opposite of -6 is 6.
KL=\sqrt{4^{2}+\left(4-2\right)^{2}}
Add -2 and 6 to get 4.
KL=\sqrt{16+\left(4-2\right)^{2}}
Calculate 4 to the power of 2 and get 16.
KL=\sqrt{16+2^{2}}
Subtract 2 from 4 to get 2.
KL=\sqrt{16+4}
Calculate 2 to the power of 2 and get 4.
KL=\sqrt{20}
Add 16 and 4 to get 20.
KL=2\sqrt{5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{KL}{K}=\frac{2\sqrt{5}}{K}
Divide both sides by K.
L=\frac{2\sqrt{5}}{K}
Dividing by K undoes the multiplication by K.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}