Solve for A
A=\frac{2My}{K^{3}}
K\neq 0
Solve for K
\left\{\begin{matrix}K=\sqrt[3]{\frac{2My}{A}}\text{, }&M\neq 0\text{ and }y\neq 0\text{ and }A\neq 0\\K\neq 0\text{, }&\left(y=0\text{ or }M=0\right)\text{ and }A=0\end{matrix}\right.
Graph
Share
Copied to clipboard
KAK^{2}=2yM
Multiply both sides of the equation by K^{2}.
K^{3}A=2yM
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
K^{3}A=2My
The equation is in standard form.
\frac{K^{3}A}{K^{3}}=\frac{2My}{K^{3}}
Divide both sides by K^{3}.
A=\frac{2My}{K^{3}}
Dividing by K^{3} undoes the multiplication by K^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}