Solve for K
K=2
Assign K
K≔2
Share
Copied to clipboard
K=\frac{49}{63}-\frac{9}{63}+\frac{1}{3}+\frac{8}{7}-\frac{1}{9}
Least common multiple of 9 and 7 is 63. Convert \frac{7}{9} and \frac{1}{7} to fractions with denominator 63.
K=\frac{49-9}{63}+\frac{1}{3}+\frac{8}{7}-\frac{1}{9}
Since \frac{49}{63} and \frac{9}{63} have the same denominator, subtract them by subtracting their numerators.
K=\frac{40}{63}+\frac{1}{3}+\frac{8}{7}-\frac{1}{9}
Subtract 9 from 49 to get 40.
K=\frac{40}{63}+\frac{21}{63}+\frac{8}{7}-\frac{1}{9}
Least common multiple of 63 and 3 is 63. Convert \frac{40}{63} and \frac{1}{3} to fractions with denominator 63.
K=\frac{40+21}{63}+\frac{8}{7}-\frac{1}{9}
Since \frac{40}{63} and \frac{21}{63} have the same denominator, add them by adding their numerators.
K=\frac{61}{63}+\frac{8}{7}-\frac{1}{9}
Add 40 and 21 to get 61.
K=\frac{61}{63}+\frac{72}{63}-\frac{1}{9}
Least common multiple of 63 and 7 is 63. Convert \frac{61}{63} and \frac{8}{7} to fractions with denominator 63.
K=\frac{61+72}{63}-\frac{1}{9}
Since \frac{61}{63} and \frac{72}{63} have the same denominator, add them by adding their numerators.
K=\frac{133}{63}-\frac{1}{9}
Add 61 and 72 to get 133.
K=\frac{19}{9}-\frac{1}{9}
Reduce the fraction \frac{133}{63} to lowest terms by extracting and canceling out 7.
K=\frac{19-1}{9}
Since \frac{19}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
K=\frac{18}{9}
Subtract 1 from 19 to get 18.
K=2
Divide 18 by 9 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}