Solve for J (complex solution)
J=\sqrt{y}
y\neq 0
Solve for J
J=\sqrt{y}
y>0
Solve for y (complex solution)
y=J^{2}
arg(J)<\pi \text{ and }J\neq 0
Solve for y
y=J^{2}
J>0
Graph
Share
Copied to clipboard
Jy^{-1}y=\sqrt{y}
Multiply both sides of the equation by y.
\frac{1}{y}Jy=\sqrt{y}
Reorder the terms.
1Jy=y\sqrt{y}
Multiply both sides of the equation by y.
Jy=\sqrt{y}y
Reorder the terms.
yJ=\sqrt{y}y
The equation is in standard form.
\frac{yJ}{y}=\frac{y^{\frac{3}{2}}}{y}
Divide both sides by y.
J=\frac{y^{\frac{3}{2}}}{y}
Dividing by y undoes the multiplication by y.
J=\sqrt{y}
Divide y^{\frac{3}{2}} by y.
Jy^{-1}y=\sqrt{y}
Multiply both sides of the equation by y.
\frac{1}{y}Jy=\sqrt{y}
Reorder the terms.
1Jy=y\sqrt{y}
Multiply both sides of the equation by y.
Jy=\sqrt{y}y
Reorder the terms.
yJ=\sqrt{y}y
The equation is in standard form.
\frac{yJ}{y}=\frac{y^{\frac{3}{2}}}{y}
Divide both sides by y.
J=\frac{y^{\frac{3}{2}}}{y}
Dividing by y undoes the multiplication by y.
J=\sqrt{y}
Divide y^{\frac{3}{2}} by y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}