Solve for J
\left\{\begin{matrix}J=\frac{144x+С}{\left(x+3\right)^{2}}\text{, }&x\neq -3\\J\in \mathrm{R}\text{, }&x=-3\text{ and }С=432\end{matrix}\right.
Share
Copied to clipboard
J\left(x^{2}+6x+9\right)=\int 144\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
Jx^{2}+6Jx+9J=\int 144\mathrm{d}x
Use the distributive property to multiply J by x^{2}+6x+9.
\left(x^{2}+6x+9\right)J=\int 144\mathrm{d}x
Combine all terms containing J.
\left(x^{2}+6x+9\right)J=144x+С
The equation is in standard form.
\frac{\left(x^{2}+6x+9\right)J}{x^{2}+6x+9}=\frac{144x+С}{x^{2}+6x+9}
Divide both sides by x^{2}+6x+9.
J=\frac{144x+С}{x^{2}+6x+9}
Dividing by x^{2}+6x+9 undoes the multiplication by x^{2}+6x+9.
J=\frac{144x+С}{\left(x+3\right)^{2}}
Divide 144x+С by x^{2}+6x+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}