Skip to main content
Solve for J
Tick mark Image

Similar Problems from Web Search

Share

J\left(x^{2}+6x+9\right)=\int 144\mathrm{d}x
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+3\right)^{2}.
Jx^{2}+6Jx+9J=\int 144\mathrm{d}x
Use the distributive property to multiply J by x^{2}+6x+9.
\left(x^{2}+6x+9\right)J=\int 144\mathrm{d}x
Combine all terms containing J.
\left(x^{2}+6x+9\right)J=144x+С
The equation is in standard form.
\frac{\left(x^{2}+6x+9\right)J}{x^{2}+6x+9}=\frac{144x+С}{x^{2}+6x+9}
Divide both sides by x^{2}+6x+9.
J=\frac{144x+С}{x^{2}+6x+9}
Dividing by x^{2}+6x+9 undoes the multiplication by x^{2}+6x+9.
J=\frac{144x+С}{\left(x+3\right)^{2}}
Divide 144x+С by x^{2}+6x+9.