Skip to main content
Solve for c
Tick mark Image
Solve for J
Tick mark Image

Similar Problems from Web Search

Share

J=50dm^{3}+10^{7}m^{4}+3.1^{4}cm^{3}+10^{16}\mu m^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
J=50dm^{3}+10000000m^{4}+3.1^{4}cm^{3}+10^{16}\mu m^{3}
Calculate 10 to the power of 7 and get 10000000.
J=50dm^{3}+10000000m^{4}+92.3521cm^{3}+10^{16}\mu m^{3}
Calculate 3.1 to the power of 4 and get 92.3521.
J=50dm^{3}+10000000m^{4}+92.3521cm^{3}+10000000000000000\mu m^{3}
Calculate 10 to the power of 16 and get 10000000000000000.
50dm^{3}+10000000m^{4}+92.3521cm^{3}+10000000000000000\mu m^{3}=J
Swap sides so that all variable terms are on the left hand side.
10000000m^{4}+92.3521cm^{3}+10000000000000000\mu m^{3}=J-50dm^{3}
Subtract 50dm^{3} from both sides.
92.3521cm^{3}+10000000000000000\mu m^{3}=J-50dm^{3}-10000000m^{4}
Subtract 10000000m^{4} from both sides.
92.3521cm^{3}=J-50dm^{3}-10000000m^{4}-10000000000000000\mu m^{3}
Subtract 10000000000000000\mu m^{3} from both sides.
\frac{923521m^{3}}{10000}c=J-10000000000000000\mu m^{3}-50dm^{3}-10000000m^{4}
The equation is in standard form.
\frac{10000\times \frac{923521m^{3}}{10000}c}{923521m^{3}}=\frac{10000\left(J-10000000000000000\mu m^{3}-50dm^{3}-10000000m^{4}\right)}{923521m^{3}}
Divide both sides by 92.3521m^{3}.
c=\frac{10000\left(J-10000000000000000\mu m^{3}-50dm^{3}-10000000m^{4}\right)}{923521m^{3}}
Dividing by 92.3521m^{3} undoes the multiplication by 92.3521m^{3}.
c=-\frac{500000d}{923521}-\frac{100000000000m}{923521}-\frac{100000000000000000000\mu }{923521}+\frac{10000J}{923521m^{3}}
Divide J-50dm^{3}-10000000m^{4}-10000000000000000\mu m^{3} by 92.3521m^{3}.