J = 50 dm ^ { 3 } + 10 ^ { 7 } mm ^ { 3 } + 3.10 ^ { 4 } cm ^ { 3 } + 10 ^ { 16 } \mu m ^ { 3 }
Solve for c
\left\{\begin{matrix}c=-\frac{500000d}{923521}-\frac{100000000000m}{923521}-\frac{100000000000000000000\mu }{923521}+\frac{10000J}{923521m^{3}}\text{, }&m\neq 0\\c\in \mathrm{R}\text{, }&J=0\text{ and }m=0\end{matrix}\right.
Solve for J
J=\frac{\left(100000000000m+500000d+923521c+100000000000000000000\mu \right)m^{3}}{10000}
Share
Copied to clipboard
J=50dm^{3}+10^{7}m^{4}+3.1^{4}cm^{3}+10^{16}\mu m^{3}
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
J=50dm^{3}+10000000m^{4}+3.1^{4}cm^{3}+10^{16}\mu m^{3}
Calculate 10 to the power of 7 and get 10000000.
J=50dm^{3}+10000000m^{4}+92.3521cm^{3}+10^{16}\mu m^{3}
Calculate 3.1 to the power of 4 and get 92.3521.
J=50dm^{3}+10000000m^{4}+92.3521cm^{3}+10000000000000000\mu m^{3}
Calculate 10 to the power of 16 and get 10000000000000000.
50dm^{3}+10000000m^{4}+92.3521cm^{3}+10000000000000000\mu m^{3}=J
Swap sides so that all variable terms are on the left hand side.
10000000m^{4}+92.3521cm^{3}+10000000000000000\mu m^{3}=J-50dm^{3}
Subtract 50dm^{3} from both sides.
92.3521cm^{3}+10000000000000000\mu m^{3}=J-50dm^{3}-10000000m^{4}
Subtract 10000000m^{4} from both sides.
92.3521cm^{3}=J-50dm^{3}-10000000m^{4}-10000000000000000\mu m^{3}
Subtract 10000000000000000\mu m^{3} from both sides.
\frac{923521m^{3}}{10000}c=J-10000000000000000\mu m^{3}-50dm^{3}-10000000m^{4}
The equation is in standard form.
\frac{10000\times \frac{923521m^{3}}{10000}c}{923521m^{3}}=\frac{10000\left(J-10000000000000000\mu m^{3}-50dm^{3}-10000000m^{4}\right)}{923521m^{3}}
Divide both sides by 92.3521m^{3}.
c=\frac{10000\left(J-10000000000000000\mu m^{3}-50dm^{3}-10000000m^{4}\right)}{923521m^{3}}
Dividing by 92.3521m^{3} undoes the multiplication by 92.3521m^{3}.
c=-\frac{500000d}{923521}-\frac{100000000000m}{923521}-\frac{100000000000000000000\mu }{923521}+\frac{10000J}{923521m^{3}}
Divide J-50dm^{3}-10000000m^{4}-10000000000000000\mu m^{3} by 92.3521m^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}